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Recap: Euclidean Space and Inner Product

We consider a real finite-dimensional vector space Rn equipped with the
standard Euclidean inner product:

⟨u, v⟩ :=
n∑

i=1
uivi

This inner product induces the Euclidean norm:

∥u∥2 =
√
⟨u, u⟩ =

√√√√ n∑
i=1

u2
i
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Recap: Euclidean Lattice

A Euclidean lattice L is a discrete additive subgroup of Rn.
• Additive subgroup:

0 ∈ L , x + y ∈ L , − x ∈ L for all x, y ∈ L .

• Discrete: For every x ∈ L , there exists ε > 0 such that
B(x, ε) ∩L = {x}

where B(x, ε) denotes the open ball of radius ε centered at x.

Figure: Example of lattice in R2
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Recap: Lattice Bases

Any lattice L ⊆ Rn admits a maximal Z-linearly independent family
(bi)1≤i≤m, with m ≤ n such that:

L =
m⊕

i=1
Zbi = {a1b1 + · · ·+ ambm | ai ∈ Z}

This family is called a basis of the lattice L .

Figure: Example of lattice with different basis in R2
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Two different bases of the same lattice

short, nearly orthogonal vectors
looks good

long, skewed basis vectors
looks bad

Can we formalize this?
→ notion of quasi-orthogonal (or reduced) bases.
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Recap: Orthogonal Bases and Gram-Schmidt Process

A basis (bi)1≤i≤n of Rn is called orthogonal if

⟨bi , bj⟩ = 0 for all i ̸= j .

Figure: Orthogonal or not orthogonal basis

How an we compute an orthogonal basis ?
→ Gram-Schmidt orthogonalization process
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Recap: Gram–Schmidt orthogonalization

Let (bi)1≤i≤n be a basis of Rn. The associated orthogonal basis (b∗
i )1≤i≤n

is constructed via the Gram–Schmidt orthogonalization process:

b∗
1 := b1, b∗

i := bi −
i−1∑
j=1

µi ,jb∗
j , µi ,j :=

⟨bi , b∗
j ⟩

∥b∗
j ∥2

.
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Recap: Gram–Schmidt orthogonalization

The coefficients µi ,j are called Gram–Schmidt coefficients.


b1
b2
...

bn

 =


1 0 · · · 0

µ2,1
. . . . . . ...

... . . . . . . 0
µn,1 · · · µn,n−1 1

×


b∗
1

b∗
2
...

b∗
n


The resulting family (b∗

i )1≤i≤n is orthogonal.
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Example: Gram–Schmidt Orthogonalization

Let

B =

−2 2 1
3 0 2
2 2 0



Step 1 : b∗
1 := b1 := (−2, 2, 1), ∥b∗

1∥2 = 22 + 22 + 1 = 9

Step 2 : µ2,1 = ⟨b2,b∗
1⟩

∥b∗
1 ∥2 = −4

9

b∗
2 := b2 − µ2,1b∗

1 = (3, 0, 2) + 4
9(−2, 2, 1) =

(
19
9 , 8

9 , 22
9

)
Step 3 : µ3,1 = 0 , µ3,2 = 54

101 , b∗
3 =

(
88
101 , 154

101 ,−132
101

)
B︷ ︸︸ ︷−2 2 1

3 0 2
2 2 0

 =

U︷ ︸︸ ︷ 1 0 0
−4

9 1 0
0 54

101 1

×
B∗︷ ︸︸ ︷−2 2 1

19
9

8
9

22
9

88
101

154
101 −132

101
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Problem: The Gram–Schmidt orthogonal basis of B is generally not a
basis of the lattice L (B).
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We want a basis of L that approximates the Gram–Schmidt basis as
closely as possible:

We define the nearest integer, as ⌈x⌋ :=
⌊
x + 1

2

⌋
.

|⌈x⌋ − x | ≤ 1
2 for all x ∈ R

Definition: A basis is said to be size-reduced if:

max
1≤j<i≤n

|µi ,j | ≤
1
2
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Why Size Reduction is Not Enough

A size-reduced basis.

B︷ ︸︸ ︷(
3 4
−2 −1

)
=

U︷ ︸︸ ︷(
1 0
−2

5 1

)
·

B∗︷ ︸︸ ︷(
3 4
−4

5
3
5

)
Length reduction alone does not imply almost-orthogonality!
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Ideally, we would like to find a basis (bi)1≤i≤n of the lattice L such that:

∥b1∥ = λ1(L ), ∥b2∥ = λ2(L ), . . . , ∥bn∥ = λn(L )

This would imply ∥b1∥ ≤ · · · ≤ ∥bn∥, but is it hard to find a such basis.

A basis (bi)1≤i≤m satisfies the original Lovász condition if:

∥b∗
i ∥2 ≤ 2∥b∗

i+1∥2 for all 1 ≤ i < n
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We can swap b1 and b2.
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Definition: LLL– reduced Basis

A basis is called LLL–reduced if:
• It is size-reduced;
• It satisfies the Lovász condition.
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Recap:The γ − SVP Problem

Definitions of λ1, λ2, . . . are detailed in (Boudgoust 2023).

Approximate Shortest Vector Problem (γ − SVP)

Given a basis B of a lattice L ⊂ Rn and an approximation factor γ > 0,
find a non-zero vector v ∈ L \ {0} such that:

∥v∥2 ≤ γ · λ1(L )

γ = 1 exact SVP — NP-hard
γ = poly(n) relevant for lattice-based cryptography
γ = 2O(n) solvable in polynomial time via LLL

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 15 / 32



Recap:The γ − SVP Problem

Definitions of λ1, λ2, . . . are detailed in (Boudgoust 2023).

Approximate Shortest Vector Problem (γ − SVP)

Given a basis B of a lattice L ⊂ Rn and an approximation factor γ > 0,
find a non-zero vector v ∈ L \ {0} such that:

∥v∥2 ≤ γ · λ1(L )

γ = 1 exact SVP — NP-hard
γ = poly(n) relevant for lattice-based cryptography
γ = 2O(n) solvable in polynomial time via LLL

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 15 / 32



Recap:The γ − SVP Problem

Definitions of λ1, λ2, . . . are detailed in (Boudgoust 2023).

Approximate Shortest Vector Problem (γ − SVP)

Given a basis B of a lattice L ⊂ Rn and an approximation factor γ > 0,
find a non-zero vector v ∈ L \ {0} such that:

∥v∥2 ≤ γ · λ1(L )

γ = 1 exact SVP — NP-hard
γ = poly(n) relevant for lattice-based cryptography
γ = 2O(n) solvable in polynomial time via LLL

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 15 / 32



Lemma

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 16 / 32

Lemma. For any b ∈ L \ {0} we have:

∥b∥ ≥ min
1≤i≤n

∥bi∥

Proof. Let (bi)1≤i≤n of the lattice L , and write:

b =
n∑

i=1
λibi ∈ L \ {0}, λi ∈ Z.

Let k be the largest index such that λk ̸= 0. We can write
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Theorem: Bound on First Vector in a Reduced Basis
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Theorem. Let (bi)1≤i≤n be a reduced basis of a lattice L ⊆ Rn, and let
b ∈ L \ {0}. Then:

∥b1∥ ≤ 2(n−1)/2 · ∥b∥.
Proof.

∥b1∥2 = ∥b∗
1∥2 ≤ 2∥b∗

2∥2 ≤ 22∥b∗
3∥2 ≤ · · · ≤ 2n−1∥b∗

n∥2.

Thus,
∥b∥ ≥ min{∥b∗

1∥, . . . , ∥b∗
n∥} ≥ 2−(n−1)/2∥b1∥

Corollary.
∥b1∥ ≤ 2(n−1)/2 · λ1(L ).

Interpretation. The vector b1 of a reduced basis solves 2(n−1)/2 − SVP.
How can we compute a reduced basis in practice?
→ Use the LLL (Lenstra 1982)(Lenstra, Lenstra, Lovasz) algorithm!
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LLL Algorithm

Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)

6 if i > 1 and ∥g∗
i−1∥2 > 2∥g∗

i ∥2 then
7 Swap gi−1 and gi , update (G∗, U)
8 i ← i − 1
9 else

10 i ← i + 1

11 return G

Gram-Schmidt

Size Reduction

Lovász Condition
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Example

Let’s compute a LLL reduced basis of L (B) with

B :=

−2 2 1
3 0 2
2 2 0


We start by compute its Gram-Schmidt decomposition :
We did it previously!

B︷ ︸︸ ︷−2 2 1
3 0 2
2 2 0

 =

U︷ ︸︸ ︷ 1 0 0
−4

9 1 0
0 54

101 1

×
B∗︷ ︸︸ ︷−2 2 1

19
9

8
9

22
9

88
101

154
101 −132

101
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LLL: Example of a Reduced Basis

We obtain the following LLL reduced basis:

Greduced =

−2 2 1
−1 2 −2
2 2 0


The vector (2, 2, 0) is a shortest nonzero vector in the lattice, hence:

λ1(L ) = 2
√

2.
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LLL Complexity

Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n) O(n2)

O(n)

O(n)

How much?
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Correctness

Key idea: Clearly, if the algorithm LLL terminates, the returned basis is
by construction LLL-reduced.

Therefore, it remains to prove that LLL always terminates.
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How can we prove the termination of the algorithm?

Let Gk =


g1
g2
...

gn

. We define dk := det(Gk · G t
k).

→ will be used to control the progress of the algorithm.
We have

dk = det
(
GkG t

k
)

= det
(
UkG∗

k (G∗
k )tUt

k
)

= det
(
G∗

k (G∗
k )t) =

∏
1≤l≤k

∥g∗
l ∥2

If we swap gi and gi−1 :
∥d∗

i−1∥ decrease by a 3
4 factor, so di−1 decrease by a 3

4 factor.
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How can we prove the termination of the algorithm?

We define Z ∋ D :=
n−1∏
k=1

dk > 1

→ After each swap, D decrease by a 3
4 factor.

Let D0 be the value of D a the start of LLL, we have

D0 =
n−1∏
k=1

dk =
n−1∏
k=1

∏
1≤l≤k

∥g∗
l ∥2 =

n−1∏
k=1
∥g∗

k∥2(n−k)

≤
n−1∏
k=1
∥gk∥2(n−k) ≤

n−1∏
k=1

(
max

1≤i≤n
∥gi∥

)2(n−k)
≤
(

max
1≤i≤n

∥gi∥
)n(n−1)

Termination proof

1 ≤ · · ·︸︷︷︸
O
(

log
(

max
1≤i≤n

∥gi∥
))

steps

≤ 4
3D1 ≤ D0 ≤

(
max

1≤i≤n
∥gi∥

)n(n−1)
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LLL Complexity

Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n) O(n2)

O(n)

O(n)

O(n2log(A))

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 29 / 32



LLL Complexity
Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n) O(n2)

O(n)

O(n)

O(n2log(A))

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 29 / 32



LLL Complexity
Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n) O(n2)

O(n)

O(n)

O(n2log(A))

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 29 / 32



LLL Complexity
Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n)

O(n2)

O(n)

O(n)

O(n2log(A))

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 29 / 32



LLL Complexity
Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n) O(n2)

O(n)

O(n)

O(n2log(A))

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 29 / 32



LLL Complexity
Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n) O(n2)

O(n)

O(n)

O(n2log(A))

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 29 / 32



LLL Complexity
Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n) O(n2)

O(n)

O(n)

O(n2log(A))

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 29 / 32



LLL Complexity
Algorithm 0: LLL

Input: A basis B = (b1, . . . , bn)
Output: An LLL-reduced basis G = (g1, . . . , gn)

1 G ← copy(B)
2 (G∗, U)← Gram-Schmidt G
3 while i ≤ n do
4 for j = i − 1, i − 2, . . . , 1 do
5 gi ← gi − ⌈µi ,j⌋ gj , update (G∗, U)
6 if i > 1 and ∥g∗

i−1∥2 > 2∥g∗
i ∥2 then

7 Swap gi−1 and gi , update (G∗, U)
i ← i − 1

8 else
9 i ← i + 1

10

11 return G

O(n3)

O(n) O(n2)

O(n)

O(n)

O(n2log(A))

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 29 / 32



Theorem: Complexity of BasisReduction

Theorem.
• LLL uses O

(
n2 log

(
max

1≤i≤n
∥bi∥

))
loop iterations.

• LLL uses O
(
n2
)

arithmetic operations over rationals per iteration.

• U represented with rationals of bit-lengths O
(

n log
(

max
1≤i≤n

∥bi∥
))

⇒ LLL uses Õ
(

n5 log2
(

max
1≤i≤n

∥bi∥
))

bit operations.

Theorem.
→ LLL compute a reduced basis in polynomial time.
→ LLL solve 2O(n) − SVP in polynomial time.
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(

n5 log2
(

max
1≤i≤n

∥bi∥
))

bit operations.

Theorem.
→ LLL compute a reduced basis in polynomial time.
→ LLL solve 2O(n) − SVP in polynomial time.

Lucas Petit The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector ProblemMay 26, 2025 30 / 32



Theorem: Complexity of BasisReduction

Theorem.
• LLL uses O

(
n2 log

(
max

1≤i≤n
∥bi∥

))
loop iterations.

• LLL uses O
(
n2
)

arithmetic operations over rationals per iteration.

• U represented with rationals of bit-lengths O
(

n log
(

max
1≤i≤n

∥bi∥
))

⇒ LLL uses Õ
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Thank you for your attention!

Questions?
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