The LLL Algorithm: Lattice Basis Reduction and applications to Approximate Shortest Vector Problem

Lucas Petit

May 26, 2025

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

Recap: Euclidean Space and Inner Product

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

★ 臣 ▶ 二 臣

Recap: Euclidean Space and Inner Product

We consider a real finite-dimensional vector space \mathbb{R}^n equipped with the standard **Euclidean inner product**:

$$\langle \mathsf{u},\mathsf{v}
angle := \sum_{i=1}^n \mathsf{u}_i \mathsf{v}_i$$

Recap: Euclidean Space and Inner Product

We consider a real finite-dimensional vector space \mathbb{R}^n equipped with the standard **Euclidean inner product**:

$$\langle \mathsf{u},\mathsf{v} \rangle := \sum_{i=1}^n \mathsf{u}_i \mathsf{v}_i$$

This inner product induces the Euclidean norm:

$$\|\mathbf{u}\|_2 = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle} = \sqrt{\sum_{i=1}^n \mathbf{u}_i^2}$$

A **Euclidean lattice** \mathscr{L} is a discrete additive subgroup of \mathbb{R}^n .

イロト 不得下 イヨト イヨト

э

A **Euclidean lattice** \mathscr{L} is a discrete additive subgroup of \mathbb{R}^n .

• Additive subgroup:

 $\mathbf{0}\in\mathscr{L}\text{, }\mathbf{x}+\mathbf{y}\in\mathscr{L}\text{, }-\mathbf{x}\in\mathscr{L}\text{ for all }\mathbf{x},\mathbf{y}\in\mathscr{L}\text{.}$

A **Euclidean lattice** \mathscr{L} is a discrete additive subgroup of \mathbb{R}^n .

• Additive subgroup:

$$\mathbf{0} \in \mathscr{L}$$
, $\mathbf{x} + \mathbf{y} \in \mathscr{L}$, $-\mathbf{x} \in \mathscr{L}$ for all $\mathbf{x}, \mathbf{y} \in \mathscr{L}$.

• Discrete: For every $\mathbf{x} \in \mathscr{L}$, there exists $\varepsilon > 0$ such that

$$\mathcal{B}(\mathbf{x},\varepsilon) \cap \mathscr{L} = \{\mathbf{x}\}$$

where $\mathcal{B}(\mathbf{x},\varepsilon)$ denotes the open ball of radius ε centered at \mathbf{x} .

A **Euclidean lattice** \mathscr{L} is a discrete additive subgroup of \mathbb{R}^n .

• Additive subgroup:

$$\mathbf{0}\in\mathscr{L}\text{, }\mathbf{x}+\mathbf{y}\in\mathscr{L}\text{, }-\mathbf{x}\in\mathscr{L}\text{ for all }\mathbf{x},\mathbf{y}\in\mathscr{L}.$$

• Discrete: For every $\mathbf{x} \in \mathscr{L}$, there exists $\varepsilon > 0$ such that

$$\mathcal{B}(\mathbf{x},\varepsilon) \cap \mathscr{L} = \{\mathbf{x}\}$$

where $\mathcal{B}(\mathbf{x},\varepsilon)$ denotes the open ball of radius ε centered at \mathbf{x} .

Figure: Example of lattice in \mathbb{R}^2

A **Euclidean lattice** \mathscr{L} is a discrete additive subgroup of \mathbb{R}^n .

• Additive subgroup:

$$\mathbf{0}\in\mathscr{L}\text{, }\mathbf{x}+\mathbf{y}\in\mathscr{L}\text{, }-\mathbf{x}\in\mathscr{L}\text{ for all }\mathbf{x},\mathbf{y}\in\mathscr{L}.$$

• Discrete: For every $\mathbf{x} \in \mathscr{L}$, there exists $\varepsilon > 0$ such that

$$\mathcal{B}(\mathbf{x},\varepsilon) \cap \mathscr{L} = {\mathbf{x}}$$

where $\mathcal{B}(\mathbf{x},\varepsilon)$ denotes the open ball of radius ε centered at \mathbf{x} .

Figure: Example of lattice in \mathbb{R}^2

A **Euclidean lattice** \mathscr{L} is a discrete additive subgroup of \mathbb{R}^n .

• Additive subgroup:

$$\mathbf{0} \in \mathscr{L}$$
, $\mathbf{x} + \mathbf{y} \in \mathscr{L}$, $-\mathbf{x} \in \mathscr{L}$ for all $\mathbf{x}, \mathbf{y} \in \mathscr{L}$.

• Discrete: For every $\mathbf{x} \in \mathscr{L}$, there exists $\varepsilon > 0$ such that

$$\mathcal{B}(\mathbf{x},\varepsilon) \cap \mathscr{L} = {\mathbf{x}}$$

where $\mathcal{B}(\mathbf{x},\varepsilon)$ denotes the open ball of radius ε centered at \mathbf{x} .

Figure: Example of lattice in \mathbb{R}^2

A **Euclidean lattice** \mathscr{L} is a discrete additive subgroup of \mathbb{R}^n .

• Additive subgroup:

$$\mathbf{0} \in \mathscr{L}$$
, $\mathbf{x} + \mathbf{y} \in \mathscr{L}$, $-\mathbf{x} \in \mathscr{L}$ for all $\mathbf{x}, \mathbf{y} \in \mathscr{L}$.

• Discrete: For every $\mathbf{x} \in \mathscr{L}$, there exists $\varepsilon > 0$ such that

$$\mathcal{B}(\mathbf{x},\varepsilon) \cap \mathscr{L} = \{\mathbf{x}\}$$

where $\mathcal{B}(\mathbf{x},\varepsilon)$ denotes the open ball of radius ε centered at \mathbf{x} .

Figure: Example of lattice in \mathbb{R}^2

3/32

Any lattice $\mathscr{L} \subseteq \mathbb{R}^n$ admits a maximal \mathbb{Z} -linearly independent family $(\mathbf{b}_i)_{1 \leq i \leq m}$, with $m \leq n$ such that:

$$\mathscr{L} = \bigoplus_{i=1}^m \mathbb{Z} \mathbf{b}_i = \{a_1 \mathbf{b}_1 + \cdots + a_m \mathbf{b}_m \mid a_i \in \mathbb{Z}\}$$

A ∃ >

Any lattice $\mathscr{L} \subseteq \mathbb{R}^n$ admits a maximal \mathbb{Z} -linearly independent family $(\mathbf{b}_i)_{1 \leq i \leq m}$, with $m \leq n$ such that:

$$\mathscr{L} = \bigoplus_{i=1}^m \mathbb{Z} \mathbf{b}_i = \{a_1 \mathbf{b}_1 + \cdots + a_m \mathbf{b}_m \mid a_i \in \mathbb{Z}\}$$

This family is called a **basis** of the lattice \mathscr{L} .

∃ ⇒

Any lattice $\mathscr{L} \subseteq \mathbb{R}^n$ admits a maximal \mathbb{Z} -linearly independent family $(\mathbf{b}_i)_{1 \leq i \leq m}$, with $m \leq n$ such that:

$$\mathscr{L} = \bigoplus_{i=1}^m \mathbb{Z} \mathbf{b}_i = \{a_1 \mathbf{b}_1 + \cdots + a_m \mathbf{b}_m \mid a_i \in \mathbb{Z}\}$$

This family is called a **basis** of the lattice \mathscr{L} .

Figure: Example of lattice with different basis in \mathbb{R}^2

Lucas Petit

Any lattice $\mathscr{L} \subseteq \mathbb{R}^n$ admits a maximal \mathbb{Z} -linearly independent family $(\mathbf{b}_i)_{1 \leq i \leq m}$, with $m \leq n$ such that:

$$\mathscr{L} = \bigoplus_{i=1}^m \mathbb{Z} \mathbf{b}_i = \{a_1 \mathbf{b}_1 + \cdots + a_m \mathbf{b}_m \mid a_i \in \mathbb{Z}\}$$

This family is called a **basis** of the lattice \mathscr{L} .

Figure: Example of lattice with different basis in \mathbb{R}^2

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

Any lattice $\mathscr{L} \subseteq \mathbb{R}^n$ admits a maximal \mathbb{Z} -linearly independent family $(\mathbf{b}_i)_{1 \leq i \leq m}$, with $m \leq n$ such that:

$$\mathscr{L} = \bigoplus_{i=1}^m \mathbb{Z} \mathbf{b}_i = \{a_1 \mathbf{b}_1 + \cdots + a_m \mathbf{b}_m \mid a_i \in \mathbb{Z}\}$$

This family is called a **basis** of the lattice \mathscr{L} .

Figure: Example of lattice with different basis in \mathbb{R}^2

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

Any lattice $\mathscr{L} \subseteq \mathbb{R}^n$ admits a maximal \mathbb{Z} -linearly independent family $(\mathbf{b}_i)_{1 \leq i \leq m}$, with $m \leq n$ such that:

$$\mathscr{L} = \bigoplus_{i=1}^m \mathbb{Z} \mathbf{b}_i = \{a_1 \mathbf{b}_1 + \cdots + a_m \mathbf{b}_m \mid a_i \in \mathbb{Z}\}$$

This family is called a **basis** of the lattice \mathscr{L} .

Figure: Example of lattice with different basis in \mathbb{R}^2

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

→ ∃ →

э

short, nearly orthogonal vectors looks good

long, skewed basis vectors looks bad

short, nearly orthogonal vectors looks good

Can we formalize this?

long, skewed basis vectors looks bad

short, nearly orthogonal vectors looks good

long, skewed basis vectors looks bad

Can we formalize this?

 \rightarrow notion of **quasi-orthogonal** (or **reduced**) bases.

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

э

• 3 •

A basis $(\mathbf{b}_i)_{1 \leq i \leq n}$ of \mathbb{R}^n is called **orthogonal** if

 $\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$ for all $i \neq j$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○

A basis $(\mathbf{b}_i)_{1 \leq i \leq n}$ of \mathbb{R}^n is called **orthogonal** if

 $\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$ for all $i \neq j$.

Figure: Orthogonal or not orthogonal basis

(ロ)

A basis $(\mathbf{b}_i)_{1 \le i \le n}$ of \mathbb{R}^n is called **orthogonal** if

 $\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$ for all $i \neq j$.

Figure: Orthogonal or not orthogonal basis

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

(3)

A basis $(\mathbf{b}_i)_{1 \leq i \leq n}$ of \mathbb{R}^n is called **orthogonal** if

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$$
 for all $i \neq j$.

Figure: Orthogonal or not orthogonal basis

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

A basis $(\mathbf{b}_i)_{1 \leq i \leq n}$ of \mathbb{R}^n is called **orthogonal** if

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$$
 for all $i \neq j$.

Figure: Orthogonal or not orthogonal basis

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

A basis $(\mathbf{b}_i)_{1 \leq i \leq n}$ of \mathbb{R}^n is called **orthogonal** if

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$$
 for all $i \neq j$.

Figure: Orthogonal or not orthogonal basis

How an we compute an orthogonal basis ?

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

A basis $(\mathbf{b}_i)_{1 \leq i \leq n}$ of \mathbb{R}^n is called **orthogonal** if

$$\langle \mathbf{b}_i, \mathbf{b}_j \rangle = 0$$
 for all $i \neq j$.

Figure: Orthogonal or not orthogonal basis

How an we compute an orthogonal basis ?

\rightarrow Gram-Schmidt orthogonalization process

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

Recap: Gram-Schmidt orthogonalization

Recap: Gram–Schmidt orthogonalization

Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a basis of \mathbb{R}^n . The associated orthogonal basis $(\mathbf{b}_i^*)_{1 \le i \le n}$ is constructed via the **Gram–Schmidt orthogonalization process**:

$$\mathbf{b}_1^* \coloneqq \mathbf{b}_1, \quad \mathbf{b}_i^* \coloneqq \mathbf{b}_i - \sum_{j=1}^{i-1} \mu_{i,j} \mathbf{b}_j^*, \quad \mu_{i,j} \coloneqq \frac{\langle \mathbf{b}_i, \mathbf{b}_j^* \rangle}{\|\mathbf{b}_j^*\|^2}.$$

Recap: Gram–Schmidt orthogonalization

Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a basis of \mathbb{R}^n . The associated orthogonal basis $(\mathbf{b}_i^*)_{1 \le i \le n}$ is constructed via the **Gram–Schmidt orthogonalization process**:

$$\mathbf{b}_1^* \coloneqq \mathbf{b}_1, \quad \mathbf{b}_i^* \coloneqq \mathbf{b}_i - \sum_{j=1}^{i-1} \mu_{i,j} \mathbf{b}_j^*, \quad \mu_{i,j} \coloneqq \frac{\langle \mathbf{b}_i, \mathbf{b}_j^* \rangle}{\|\mathbf{b}_j^*\|^2}.$$

The LLL Algorithm: Lattice Basis Reduction

Recap: Gram-Schmidt orthogonalization

э

The coefficients $\mu_{i,j}$ are called **Gram–Schmidt coefficients**.

$$\begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \mu_{2,1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \mu_{n,1} & \cdots & \mu_{n,n-1} & 1 \end{pmatrix} \times \begin{pmatrix} \mathbf{b}_1^* \\ \mathbf{b}_2^* \\ \vdots \\ \mathbf{b}_n^* \end{pmatrix}$$

★ ∃ >
The coefficients $\mu_{i,i}$ are called **Gram–Schmidt coefficients**.

$$\begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_n \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \mu_{2,1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \mu_{n,1} & \cdots & \mu_{n,n-1} & 1 \end{pmatrix} \times \begin{pmatrix} \mathbf{b}_1^* \\ \mathbf{b}_2^* \\ \vdots \\ \mathbf{b}_n^* \end{pmatrix}$$

The resulting family $(\mathbf{b}_i^*)_{1 \le i \le n}$ is orthogonal.

• 3 •

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1 : b_1^*

< (17) < (17)

• = •

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1 : $b_1^* :=$

3

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1 : $b_1^* := b_1$

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1 : $b_1^* := b_1 :=$

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1 : $\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1)$,

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1: $\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2$

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1: $\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 =$

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1: $\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1$

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1: $\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 =$

Let $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$

Step 1: $\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \ \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$

 $B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$ Step 1: $\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$ Step 2: $\mu_{2,1}$

Let

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

$$\begin{array}{lll} \textbf{Step 1:} & \mathbf{b}_1^* := \mathbf{b}_1 := (-2,2,1) \text{, } \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9 \\ \textbf{Step 2:} & \mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} \end{array}$$

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

$$\begin{array}{lll} \textbf{Step 1:} & \mathbf{b}_1^* := \mathbf{b}_1 := (-2,2,1), \ \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9 \\ \textbf{Step 2:} & \mu_{2,1} = \frac{\left< \mathbf{b}_2, \mathbf{b}_1^* \right>}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9} \end{array}$$

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 \mathbf{b}_2^*

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 $\mathbf{b}_2^* :=$

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 $\mathbf{b}_2^* := \mathbf{b}_2 - \mu_{2,1} \mathbf{b}_1^*$

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 $\mathbf{b}_2^* := \mathbf{b}_2 - \mu_{2,1} \mathbf{b}_1^* = (3, 0, 2) + \frac{4}{9}(-2, 2, 1)$

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 $\mathbf{b}_2^* := \mathbf{b}_2 - \mu_{2,1} \mathbf{b}_1^* = (3, 0, 2) + \frac{4}{9}(-2, 2, 1) = \left(\frac{19}{9}, \frac{8}{9}, \frac{22}{9}\right)$

Let

$$B = \begin{pmatrix} -2 & 2 & 1\\ 3 & 0 & 2\\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 $\mathbf{b}_2^* := \mathbf{b}_2 - \mu_{2,1}\mathbf{b}_1^* = (3, 0, 2) + \frac{4}{9}(-2, 2, 1) = \left(\frac{19}{9}, \frac{8}{9}, \frac{22}{9}\right)$
Step 3: $\mu_{3,1} = 0$, $\mu_{3,2} = \frac{54}{101}$,

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 $\mathbf{b}_2^* := \mathbf{b}_2 - \mu_{2,1} \mathbf{b}_1^* = (3, 0, 2) + \frac{4}{9}(-2, 2, 1) = \left(\frac{19}{9}, \frac{8}{9}, \frac{22}{9}\right)$
Step 3: $\mu_{3,1} = 0$, $\mu_{3,2} = \frac{54}{101}, \mathbf{b}_3^* = \left(\frac{88}{101}, \frac{154}{101}, -\frac{132}{101}\right)$

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 $\mathbf{b}_2^* := \mathbf{b}_2 - \mu_{2,1} \mathbf{b}_1^* = (3, 0, 2) + \frac{4}{9}(-2, 2, 1) = \left(\frac{19}{9}, \frac{8}{9}, \frac{22}{9}\right)$
Step 3: $\mu_{3,1} = 0$, $\mu_{3,2} = \frac{54}{101}, \mathbf{b}_3^* = \left(\frac{88}{101}, \frac{154}{101}, -\frac{132}{101}\right)$

$$\overbrace{\begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}}^{B} =$$

 Image: white white

Let

$$B = \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Step 1:
$$\mathbf{b}_1^* := \mathbf{b}_1 := (-2, 2, 1), \|\mathbf{b}_1^*\|^2 = 2^2 + 2^2 + 1 = 9$$

Step 2: $\mu_{2,1} = \frac{\langle \mathbf{b}_2, \mathbf{b}_1^* \rangle}{\|\mathbf{b}_1^*\|^2} = -\frac{4}{9}$
 $\mathbf{b}_2^* := \mathbf{b}_2 - \mu_{2,1} \mathbf{b}_1^* = (3, 0, 2) + \frac{4}{9}(-2, 2, 1) = \left(\frac{19}{9}, \frac{8}{9}, \frac{22}{9}\right)$
Step 3: $\mu_{3,1} = 0$, $\mu_{3,2} = \frac{54}{101}, \mathbf{b}_3^* = \left(\frac{88}{101}, \frac{154}{101}, -\frac{132}{101}\right)$

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

L	uc	a	s I	P,	e	t	it	l

<ロト <問ト < 目と < 目と

æ

Problem: The Gram–Schmidt orthogonal basis of *B* is generally not a basis of the lattice $\mathcal{L}(B)$.

Problem: The Gram–Schmidt orthogonal basis of *B* is generally not a basis of the lattice $\mathcal{L}(B)$.

Problem: The Gram–Schmidt orthogonal basis of *B* is generally not a basis of the lattice $\mathcal{L}(B)$.

L	uc	a	s I	P,	e	t	it	l

<ロト <問ト < 目と < 目と

æ

We want a basis of $\mathscr L$ that approximates the Gram–Schmidt basis as closely as possible:

→

We want a basis of $\mathscr L$ that approximates the Gram–Schmidt basis as closely as possible:

We want a basis of $\mathscr L$ that approximates the Gram–Schmidt basis as closely as possible:

We want a basis of $\mathscr L$ that approximates the Gram–Schmidt basis as closely as possible:

We want a basis of \mathscr{L} that *approximates* the Gram–Schmidt basis as closely as possible:

Definition: A basis is said to be size-reduced if:

$$\max_{1 \le j < i \le n} |\mu_{i,j}| \le \frac{1}{2}$$

Why Size Reduction is Not Enough

A size-reduced basis.

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

< 1 k

3. 3

Why Size Reduction is Not Enough

Why Size Reduction is Not Enough

Length reduction alone **does not imply** almost-orthogonality!

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

L	uc	a	s I	P,	e	t	it	l

イロト イボト イヨト イヨト

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \leq i \leq n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis.

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis. A basis $(\mathbf{b}_i)_{1 \leq i \leq m}$ satisfies the **original Lovász condition** if:

$$\|\mathbf{b}_i^*\|^2 \leq 2\|\mathbf{b}_{i+1}^*\|^2$$
 for all $1 \leq i < n$

(ロ)

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis. A basis $(\mathbf{b}_i)_{1 \leq i \leq m}$ satisfies the **original Lovász condition** if:

13/32

Lucas Petit

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis. A basis $(\mathbf{b}_i)_{1 \leq i \leq m}$ satisfies the **original Lovász condition** if:

The LLL Algorithm: Lattice Basis Reduction

May 26

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis. A basis $(\mathbf{b}_i)_{1 \leq i \leq m}$ satisfies the **original Lovász condition** if:

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

13/32

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis. A basis $(\mathbf{b}_i)_{1 \leq i \leq m}$ satisfies the **original Lovász condition** if:

13/32

Lucas Petit

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis. A basis $(\mathbf{b}_i)_{1 \leq i \leq m}$ satisfies the **original Lovász condition** if:

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis. A basis $(\mathbf{b}_i)_{1 \leq i \leq m}$ satisfies the **original Lovász condition** if:

Ideally, we would like to find a basis $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} such that:

$$\|\mathbf{b}_1\| = \lambda_1(\mathscr{L}), \quad \|\mathbf{b}_2\| = \lambda_2(\mathscr{L}), \quad \dots, \quad \|\mathbf{b}_n\| = \lambda_n(\mathscr{L})$$

This would imply $\|\mathbf{b}_1\| \leq \cdots \leq \|\mathbf{b}_n\|$, but is it hard to find a such basis. A basis $(\mathbf{b}_i)_{1 \leq i \leq m}$ satisfies the **original Lovász condition** if:

A basis is called LLL-reduced if:

- It is size-reduced;
- It satisfies the Lovász condition.

→ ∃ →

▲ 同 ▶ → 三 ▶

Recap:The $\gamma - SVP$ Problem

Definitions of λ_1 , λ_2 , ... are detailed in (Boudgoust 2023).

Definitions of λ_1 , λ_2 , ... are detailed in (Boudgoust 2023).

Approximate Shortest Vector Problem ($\gamma - SVP$)

Given a basis *B* of a lattice $\mathscr{L} \subset \mathbb{R}^n$ and an approximation factor $\gamma > 0$, find a non-zero vector $\mathbf{v} \in \mathscr{L} \setminus {\mathbf{0}}$ such that:

 $\|\mathbf{v}\|_2 \leq \gamma \cdot \lambda_1(\mathscr{L})$

(ロ)

Definitions of λ_1 , λ_2 , ... are detailed in (Boudgoust 2023).

Approximate Shortest Vector Problem ($\gamma - SVP$)

Given a basis *B* of a lattice $\mathscr{L} \subset \mathbb{R}^n$ and an approximation factor $\gamma > 0$, find a non-zero vector $\mathbf{v} \in \mathscr{L} \setminus {\mathbf{0}}$ such that:

$$\|\mathbf{v}\|_2 \leq \gamma \cdot \lambda_1(\mathscr{L})$$

 $\begin{array}{ll} \gamma = 1 & \mbox{exact SVP} - \mbox{NP-hard} \\ \gamma = \mbox{poly}(n) & \mbox{relevant for lattice-based cryptography} \\ \gamma = 2^{\mathcal{O}(n)} & \mbox{solvable in polynomial time via LLL} \end{array}$

(ロ)

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

 $\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i$$

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

$$\mathbf{b} = \sum_{i=1}^k \lambda_i \mathbf{b}_i$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

$$\mathbf{b} = \sum_{i=1}^{k} \lambda_i \left(\mathbf{b}_i^* + \sum_{j=1}^{i} \mu_{ij} \mathbf{b}_j^* \right)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

$$\mathbf{b} = \sum_{i=1}^{k} \lambda_i \mathbf{b}_i^* + \lambda_i \sum_{j=1}^{i} \mu_{ij} \mathbf{b}_j^*$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

$$\mathbf{b} = \lambda_k \mathbf{b}_k^* + \sum_{i < k} \lambda_i \sum_{j=1}^i \mu_{ij} \mathbf{b}_j^*$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

$$\mathbf{b} = \lambda_k \mathbf{b}_k^* + \sum_{i < k} \nu_i \mathbf{b}_i^*, \quad \nu_i \in \mathbb{R}$$

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

$$\mathbf{b} = \lambda_k \mathbf{b}_k^* + \sum_{i < k} \nu_i \mathbf{b}_i^*, \quad \nu_i \in \mathbb{R}$$

Hence

$$\|\mathbf{b}\|^{2} = \lambda_{k}^{2} \|\mathbf{b}_{k}^{*}\|^{2} + \sum_{i < k} \nu_{i}^{2} \|\mathbf{b}_{i}^{*}\|^{2}$$

$$\geq \lambda_k^2 \|\mathbf{b}_k^*\|^2 \geq \|\mathbf{b}_k^*\|^2$$

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

Lemma. For any $\mathbf{b} \in \mathscr{L} \setminus \{0\}$ we have:

$$\|\mathbf{b}\| \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Proof. Let $(\mathbf{b}_i)_{1 \le i \le n}$ of the lattice \mathscr{L} , and write:

$$\mathbf{b} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \in \mathscr{L} \setminus \{\mathbf{0}\}, \quad \lambda_i \in \mathbb{Z}.$$

Let k be the largest index such that $\lambda_k \neq 0$. We can write

$$\mathbf{b} = \lambda_k \mathbf{b}_k^* + \sum_{i < k} \nu_i \mathbf{b}_i^*, \quad \nu_i \in \mathbb{R}$$

Hence

$$\|\mathbf{b}\|^{2} = \lambda_{k}^{2} \|\mathbf{b}_{k}^{*}\|^{2} + \sum_{i < k} \nu_{i}^{2} \|\mathbf{b}_{i}^{*}\|^{2}$$

$$\geq \lambda_k^2 \|\mathbf{b}_k^*\|^2 \geq \|\mathbf{b}_k^*\|^2 \geq \min_{1 \leq i \leq n} \|\mathbf{b}_i\|$$

Lucas Petit

Theorem: Bound on First Vector in a Reduced Basis

< ∃⇒

э

Theorem: Bound on First Vector in a Reduced Basis

Theorem. Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a reduced basis of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, and let $\mathbf{b} \in \mathscr{L} \setminus \{0\}$. Then:

 $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \|\mathbf{b}\|.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ◆□ ● ◇◇◇

Theorem: Bound on First Vector in a Reduced Basis

Theorem. Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a reduced basis of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, and let $\mathbf{b} \in \mathscr{L} \setminus \{0\}$. Then:

$$\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \|\mathbf{b}\|.$$

Proof.

$$|\mathbf{b}_1||^2 = \|\mathbf{b}_1^*\|^2 \le 2\|\mathbf{b}_2^*\|^2 \le 2^2\|\mathbf{b}_3^*\|^2 \le \dots \le 2^{n-1}\|\mathbf{b}_n^*\|^2.$$

Thus,

$$\|\mathbf{b}\| \ge \min\{\|\mathbf{b}_1^*\|, \dots, \|\mathbf{b}_n^*\|\} \ge 2^{-(n-1)/2}\|\mathbf{b}_1\|$$
Theorem. Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a reduced basis of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, and let $\mathbf{b} \in \mathscr{L} \setminus \{0\}$. Then:

 $\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \|\mathbf{b}\|.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ◆□ ● ◇◇◇

Theorem. Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a reduced basis of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, and let $\mathbf{b} \in \mathscr{L} \setminus \{0\}$. Then:

$$\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \|\mathbf{b}\|.$$

Corollary.

$$\|\mathbf{b}_1\| \leq 2^{(n-1)/2} \cdot \lambda_1(\mathscr{L}).$$

Theorem. Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a reduced basis of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, and let $\mathbf{b} \in \mathscr{L} \setminus \{0\}$. Then:

$$\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \|\mathbf{b}\|.$$

Corollary.

$$\|\mathbf{b}_1\| \leq 2^{(n-1)/2} \cdot \lambda_1(\mathscr{L}).$$

Interpretation. The vector \mathbf{b}_1 of a reduced basis **solves** $2^{(n-1)/2} - SVP$.

Theorem. Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a reduced basis of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, and let $\mathbf{b} \in \mathscr{L} \setminus \{0\}$. Then:

$$\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \|\mathbf{b}\|.$$

Corollary.

$$\|\mathbf{b}_1\| \leq 2^{(n-1)/2} \cdot \lambda_1(\mathscr{L}).$$

Interpretation. The vector \mathbf{b}_1 of a reduced basis **solves** $2^{(n-1)/2} - \text{SVP}$. How can we compute a reduced basis in practice?

Theorem. Let $(\mathbf{b}_i)_{1 \le i \le n}$ be a reduced basis of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, and let $\mathbf{b} \in \mathscr{L} \setminus \{\mathbf{0}\}$. Then:

$$\|\mathbf{b}_1\| \le 2^{(n-1)/2} \cdot \|\mathbf{b}\|.$$

Corollary.

$$\|\mathbf{b}_1\| \leq 2^{(n-1)/2} \cdot \lambda_1(\mathscr{L}).$$

Interpretation. The vector \mathbf{b}_1 of a reduced basis **solves** $2^{(n-1)/2} - SVP$. How can we compute a reduced basis in practice?

 \rightarrow Use the LLL (Lenstra 1982)(Lenstra, Lenstra, Lovasz) algorithm!

Lucas Petit

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G$ 3 while i < n do 4 for $i = i - 1, i - 2, \dots, 1$ do $| \mathbf{g}_i \leftarrow \mathbf{g}_i - \lceil \mu_{i,j} \rfloor \mathbf{g}_j$, update (G^*, U) 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i-1$ 7 8 else 9 $i \leftarrow i+1$ 10 11 return G

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G$ Gram-Schmidt 3 while i < n do 4 for $i = i - 1, i - 2, \dots, 1$ do | $\mathbf{g}_i \leftarrow \mathbf{g}_i - [\mu_{i,i}] \mathbf{g}_i$, update (G^*, U) 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i-1$ 7 8 else 9 $i \leftarrow i+1$ 10 11 return G

Lucas Petit

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G$ Gram-Schmidt 3 while i < n do 4 for $i = i - 1, i - 2, \dots, 1$ do $| \mathbf{g}_i \leftarrow \mathbf{g}_i - \lceil \mu_{i,j} \rfloor \mathbf{g}_j, \text{ update } (G^*, U) |$ 5 Size Reduction if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i-1$ 7 8 else 9 $i \leftarrow i+1$ 10 11 return G < 同 ト < 三 ト < 三 ト

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $[(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G]$ Gram-Schmidt 3 while i < n do 4 for $i = i - 1, i - 2, \dots, 1$ do $| \mathbf{g}_i \leftarrow \mathbf{g}_i - [\mu_{i,j}] \mathbf{g}_j$, update (G^*, U) 5 **Size Reduction** if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then Lovász Condition 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) 7 $i \leftarrow i - 1$ 8 else 9 $i \leftarrow i+1$ 10 11 return G

Let's compute a LLL reduced basis of $\mathscr{L}(B)$ with

$$B := \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

Let's compute a LLL reduced basis of $\mathscr{L}(B)$ with

$$B \coloneqq \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

We start by compute its Gram-Schmidt decomposition :

Let's compute a LLL reduced basis of $\mathscr{L}(B)$ with

$$B \coloneqq \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

We start by compute its Gram-Schmidt decomposition : We did it previously!

Let's compute a LLL reduced basis of $\mathscr{L}(B)$ with

$$B \coloneqq \begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

We start by compute its Gram-Schmidt decomposition : We did it previously!

$$\overbrace{\begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}}^{B} = \overbrace{\begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{9} & 1 & 0 \\ 0 & \frac{54}{101} & 1 \end{pmatrix}}^{U} \times \overbrace{\begin{pmatrix} -2 & 2 & 1 \\ \frac{19}{9} & \frac{3}{9} & \frac{22}{9} \\ \frac{88}{101} & \frac{154}{101} & -\frac{132}{101} \end{pmatrix}}^{B^*}$$

May 26, 2025

イロト イヨト イヨト ・

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{9} & 1 & 0 \\ 0 & \frac{54}{101} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ \frac{19}{9} & \frac{8}{9} & \frac{22}{9} \\ \frac{88}{101} & \frac{154}{101} & -\frac{132}{101} \end{pmatrix}}_{G^*}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{9} & 1 & 0 \\ 0 & \frac{54}{101} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ \frac{19}{9} & \frac{8}{9} & \frac{22}{9} \\ \frac{88}{101} & \frac{154}{101} & -\frac{132}{101} \end{pmatrix}}_{G^*}$$
Size Reduction $\mathbf{g}_3 \leftarrow \mathbf{g}_3 - \begin{bmatrix} \frac{54}{101} \end{bmatrix} \cdot \mathbf{g}_2$

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{9} & 1 & 0 \\ 0 & \frac{54}{101} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ \frac{19}{9} & \frac{8}{9} & \frac{22}{9} \\ \frac{88}{101} & \frac{154}{101} & -\frac{132}{101} \end{pmatrix}}_{G^*}$$
Size Reduction $\mathbf{g}_3 \leftarrow \mathbf{g}_3 - 1 \cdot \mathbf{g}_2$

The LLL Algorithm: Lattice Basis Reduction

 Image: white the second sec

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{9} & 1 & 0 \\ 0 & \frac{54}{101} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ \frac{19}{9} & \frac{8}{9} & \frac{22}{9} \\ \frac{88}{101} & \frac{154}{101} & -\frac{132}{101} \end{pmatrix}}_{G^*}$$

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ \frac{19}{9} & \frac{8}{9} & \frac{22}{9} \\ \frac{88}{101} & \frac{154}{101} & -\frac{132}{101} \end{pmatrix}}_{G^*}$$

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ 3 & 0 & 2 \\ -1 & 2 & -2 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ -\frac{4}{9} & 1 & 0 \\ 0 & -\frac{47}{101} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ \frac{19}{9} & \frac{8}{9} & \frac{22}{9} \\ \frac{88}{101} & \frac{154}{101} & -\frac{132}{101} \end{pmatrix}}_{G^*}$$

The LLL Algorithm: Lattice Basis Reduction

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

æ

21/32

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -1 & 2 & -2 \\ 3 & 0 & 2 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ \frac{4}{9} & 1 & 0 \\ -\frac{4}{9} & -\frac{47}{65} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -\frac{1}{9} & \frac{10}{9} & -\frac{22}{9} \\ \frac{132}{165} & \frac{22}{13} & -\frac{44}{65} \end{pmatrix}}_{G^*}$$

・ ロ ト ・ 一部 ト ・ 注 ト ・ 注 ト ・ 注
ion May 26, 2025

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -1 & 2 & -2 \\ 3 & 0 & 2 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ \frac{4}{9} & 1 & 0 \\ -\frac{4}{9} & -\frac{47}{65} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -\frac{1}{9} & \frac{10}{9} & -\frac{22}{9} \\ \frac{132}{165} & \frac{22}{13} & -\frac{44}{65} \end{pmatrix}}_{G^*}$$
Size Reduction $\mathbf{g}_3 \leftarrow \mathbf{g}_3 - \left[-\frac{47}{65}\right]\mathbf{g}_2$

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -1 & 2 & -2 \\ 3 & 0 & 2 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ \frac{4}{9} & 1 & 0 \\ -\frac{4}{9} & -\frac{47}{65} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -\frac{1}{9} & \frac{10}{9} & -\frac{22}{9} \\ \frac{132}{165} & \frac{22}{13} & -\frac{44}{65} \end{pmatrix}}_{G^*}$$
Size Reduction $\mathbf{g}_3 \leftarrow \mathbf{g}_3 + 1\mathbf{g}_2$

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

 Image: white the second sec

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -1 & 2 & -2 \\ 3 & 0 & 2 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ \frac{4}{9} & 1 & 0 \\ -\frac{4}{9} & -\frac{47}{65} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -\frac{1}{9} & \frac{10}{9} & -\frac{22}{9} \\ \frac{132}{165} & \frac{22}{13} & -\frac{44}{65} \end{pmatrix}}_{G^*}$$

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -\frac{1}{9} & \frac{10}{9} & -\frac{22}{9} \\ \frac{132}{165} & \frac{22}{13} & -\frac{44}{65} \end{pmatrix}}_{G^*}$$

$$\underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -1 & 2 & -2 \\ 2 & 2 & 0 \end{pmatrix}}_{G} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ \frac{4}{9} & 1 & 0 \\ 0 & \frac{18}{65} & 1 \end{pmatrix}}_{U} \cdot \underbrace{\begin{pmatrix} -2 & 2 & 1 \\ -\frac{1}{9} & \frac{10}{9} & -\frac{22}{9} \\ \frac{132}{165} & \frac{22}{13} & -\frac{44}{65} \end{pmatrix}}_{G^*}$$

The LLL Algorithm: Lattice Basis Reduction

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

22 / 32

LLL: Example of a Reduced Basis

We obtain the following LLL reduced basis:

$$G_{\text{reduced}} = \begin{pmatrix} -2 & 2 & 1\\ -1 & 2 & -2\\ 2 & 2 & 0 \end{pmatrix}$$

∃ ⇒

We obtain the following LLL reduced basis:

$$G_{\text{reduced}} = \begin{pmatrix} -2 & 2 & 1\\ -1 & 2 & -2\\ 2 & 2 & 0 \end{pmatrix}$$

The vector (2, 2, 0) is a shortest nonzero vector in the lattice, hence:

$$\lambda_1(\mathscr{L})=2\sqrt{2}.$$

I ∃ ►

L	uc	as	5 I	Pe	et	it
_		_	-			

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G$ while i < n do 3 4 for i = i - 1, i - 2, ..., 1 do $| \mathbf{g}_i \leftarrow \mathbf{g}_i - \lceil \mu_{i,j}
floor \mathbf{g}_j$, update (G^*, U) 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i-1$ 7 else 8 $i \leftarrow i+1$ 9 10 ▲□▶ ▲□▶ ▲目▶ ▲目▶ - ヨ - ろの⊙ turn C Lucas Petit The LLL Algorithm: Lattice Basis Reduction May 26, 2025

24 / 32

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $[(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G] \mathcal{O}(n^3)$ while i < n do 3 4 for $i = i - 1, i - 2, \dots, 1$ do $|\mathbf{g}_i \leftarrow \mathbf{g}_i - [\mu_{i,j} | \mathbf{g}_j, \text{ update } (G^*, U)$ 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i-1$ 7 else 8 $i \leftarrow i+1$ 9 10 urn C Lucas Petit The LLL Algorithm: Lattice Basis Reduction May 26, 2025

24 / 32

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $[(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G] \mathcal{O}(n^3)$ while i < n do 3 4 for $i = i - 1, i - 2, \dots, 1$ do $[\mathbf{g}_i \leftarrow \mathbf{g}_i - [\mu_{i,j}] \mathbf{g}_j, \text{ update } (G^*, U)] \mathcal{O}(n)$ 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) 7 $i \leftarrow i - 1$ else 8 $i \leftarrow i+1$ 9 10 urn C Lucas Petit The LLL Algorithm: Lattice Basis Reduction May 26, 2025 24 / 32

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $[(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G] \mathcal{O}(n^3)$ while i < n do 3 for j = i - 1, i - 2, ..., 1 do $\mathbf{g}_i \leftarrow \mathbf{g}_i - \lceil \mu_{i,j} \rfloor \mathbf{g}_j$, update $(G^*, U) \mathcal{O}(n)$ 4 $\mathcal{O}(n^2)$ 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i-1$ 7 else 8 $i \leftarrow i+1$ 9 10 くぼう くほう くほう urn (Lucas Petit The LLL Algorithm: Lattice Basis Reduction May 26, 2025

24 / 32
Algorithm 0: LLL

Algorithm 0: LLL

Algorithm 0: LLL

Key idea: Clearly, if the algorithm LLL terminates, the returned basis is by construction LLL-reduced.

Therefore, it remains to prove that LLL always terminates.

∃ ⇒

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

26 / 32

< 3 >

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
.

< 3 >

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

May 26, 2025

< 3 >

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

 \rightarrow will be used to control the progress of the algorithm.

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

 \rightarrow will be used to control the progress of the algorithm. We have

< 3 >

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

 \rightarrow will be used to control the progress of the algorithm. We have

 d_k

< 3 >

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

 \rightarrow will be used to control the progress of the algorithm. We have

 $d_k = \det\left(G_k G_k^t\right)$

A 3 A

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

 \rightarrow will be used to control the progress of the algorithm. We have

 $d_k = \det \left(G_k G_k^t \right) = \det \left(U_k G_k^* (G_k^*)^t U_k^t \right)$

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

 \rightarrow will be used to control the progress of the algorithm. We have

$$d_k = \det \left(G_k G_k^t \right) = \det \left(U_k G_k^* (G_k^*)^t U_k^t \right) = \det \left(G_k^* (G_k^*)^t \right)$$

< ∃⇒

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

 \rightarrow will be used to control the progress of the algorithm. We have

$$d_{k} = \det \left(G_{k} G_{k}^{t} \right) = \det \left(U_{k} G_{k}^{*} (G_{k}^{*})^{t} U_{k}^{t} \right) = \det \left(G_{k}^{*} (G_{k}^{*})^{t} \right) = \prod_{1 \le l \le k} \| \mathbf{g}_{l}^{*} \|^{2}$$

< ∃⇒

Let
$$G_k = \begin{pmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \\ \vdots \\ \mathbf{g}_n \end{pmatrix}$$
. We define $d_k := \det(G_k \cdot G_k^t)$.

 \rightarrow will be used to control the progress of the algorithm. We have

$$d_{k} = \det (G_{k}G_{k}^{t}) = \det (U_{k}G_{k}^{*}(G_{k}^{*})^{t}U_{k}^{t}) = \det (G_{k}^{*}(G_{k}^{*})^{t}) = \prod_{1 \leq l \leq k} \|\mathbf{g}_{l}^{*}\|^{2}$$

If we **swap** \mathbf{g}_i and \mathbf{g}_{i-1} : $\|\mathbf{d}_{i-1}^*\|$ decrease by a $\frac{3}{4}$ factor, so \mathbf{d}_{i-1} decrease by a $\frac{3}{4}$ factor.

★ ∃ >

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

< 3 >

We define $\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$

 \rightarrow After each swap, *D* decrease by a $\frac{3}{4}$ factor.

< 47 > <

• 3 •

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, *D* decrease by a $\frac{3}{4}$ factor.

$$D_0 =$$

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, *D* decrease by a $\frac{3}{4}$ factor.

$$D_0 = \prod_{k=1}^{n-1} d_k =$$

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, D decrease by a $\frac{3}{4}$ factor.

$$D_0 = \prod_{k=1}^{n-1} d_k = \prod_{k=1}^{n-1} \prod_{1 \le l \le k} \|\mathbf{g}_l^*\|^2 =$$

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, *D* decrease by a $\frac{3}{4}$ factor.

$$D_0 = \prod_{k=1}^{n-1} d_k = \prod_{k=1}^{n-1} \prod_{1 \le l \le k} \|\mathbf{g}_l^*\|^2 = \prod_{k=1}^{n-1} \|\mathbf{g}_k^*\|^{2(n-k)}$$

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, D decrease by a $rac{3}{4}$ factor.

$$D_0 = \prod_{k=1}^{n-1} d_k = \prod_{k=1}^{n-1} \prod_{1 \le l \le k} \|\mathbf{g}_l^*\|^2 = \prod_{k=1}^{n-1} \|\mathbf{g}_k^*\|^{2(n-k)}$$

$$\leq \prod_{k=1}^{n-1} \|\mathbf{g}_k\|^{2(n-k)}$$

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, D decrease by a $\frac{3}{4}$ factor.

Let D_0 be the value of D a the start of LLL, we have

$$D_0 = \prod_{k=1}^{n-1} d_k = \prod_{k=1}^{n-1} \prod_{1 \le l \le k} \|\mathbf{g}_l^*\|^2 = \prod_{k=1}^{n-1} \|\mathbf{g}_k^*\|^{2(n-k)}$$
$$\prod_{k=1}^{n-1} \|\mathbf{g}_k\|^{2(n-k)} \le \prod_{k=1}^{n-1} \left(\max_{1 \le i \le n} \|\mathbf{g}_i\|\right)^{2(n-k)}$$

<

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, D decrease by a $\frac{3}{4}$ factor.

$$D_{0} = \prod_{k=1}^{n-1} d_{k} = \prod_{k=1}^{n-1} \prod_{1 \le l \le k} \|\mathbf{g}_{l}^{*}\|^{2} = \prod_{k=1}^{n-1} \|\mathbf{g}_{k}^{*}\|^{2(n-k)}$$
$$\leq \prod_{k=1}^{n-1} \|\mathbf{g}_{k}\|^{2(n-k)} \le \prod_{k=1}^{n-1} \left(\max_{1 \le i \le n} \|\mathbf{g}_{i}\|\right)^{2(n-k)} \le \left(\max_{1 \le i \le n} \|\mathbf{g}_{i}\|\right)^{n(n-1)}$$

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, D decrease by a $\frac{3}{4}$ factor.

Let D_0 be the value of D a the start of LLL, we have

$$D_{0} = \prod_{k=1}^{n-1} d_{k} = \prod_{k=1}^{n-1} \prod_{1 \le l \le k} \|\mathbf{g}_{l}^{*}\|^{2} = \prod_{k=1}^{n-1} \|\mathbf{g}_{k}^{*}\|^{2(n-k)}$$
$$\prod_{k=1}^{n-1} \|\mathbf{g}_{k}\|^{2(n-k)} \le \prod_{k=1}^{n-1} \left(\max_{1 \le i \le n} \|\mathbf{g}_{i}\|\right)^{2(n-k)} \le \left(\max_{1 \le i \le n} \|\mathbf{g}_{i}\|\right)^{n(n-1)}$$

Termination proof

<

We define
$$\mathbb{Z}
i D := \prod_{k=1}^{n-1} d_k > 1$$

 \rightarrow After each swap, D decrease by a $\frac{3}{4}$ factor.

Let D_0 be the value of D a the start of LLL, we have

$$D_{0} = \prod_{k=1}^{n-1} d_{k} = \prod_{k=1}^{n-1} \prod_{1 \le l \le k} \|\mathbf{g}_{l}^{*}\|^{2} = \prod_{k=1}^{n-1} \|\mathbf{g}_{k}^{*}\|^{2(n-k)}$$
$$\prod_{k=1}^{n-1} \|\mathbf{g}_{k}\|^{2(n-k)} \le \prod_{k=1}^{n-1} \left(\max_{1 \le i \le n} \|\mathbf{g}_{i}\|\right)^{2(n-k)} \le \left(\max_{1 \le i \le n} \|\mathbf{g}_{i}\|\right)^{n(n-1)}$$

Termination proof

<

$$1 \leq \underbrace{\cdots}_{\mathcal{O}\left(\log\left(\max_{1 \leq i \leq n} \|\mathbf{g}_i\|\right)\right) \text{ steps}} \leq \frac{4}{3} D_1 \leq D_0 \leq \left(\max_{1 \leq i \leq n} \|\mathbf{g}_i\|\right)^{n(n-1)}$$

May 26, 2025

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

3

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G$ while i < n do 3 4 for i = i - 1, i - 2, ..., 1 do $| \mathbf{g}_i \leftarrow \mathbf{g}_i - [\mu_{i,j}] \mathbf{g}_j$, update (G^*, U) 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i-1$ 7 else 8 $i \leftarrow i+1$ g 10

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $[(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G] \mathcal{O}(n^3)$ while i < n do 3 4 for i = i - 1, i - 2, ..., 1 do $|\mathbf{g}_i \leftarrow \mathbf{g}_i - [\mu_{i,j} | \mathbf{g}_j, \text{ update } (G^*, U)$ 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i-1$ 7 else 8 $i \leftarrow i+1$ g 10 ・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うへつ

May 26, 2025

Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $[(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G] \mathcal{O}(n^3)$ while i < n do 3 4 for i = i - 1, i - 2, ..., 1 do $[\mathbf{g}_i \leftarrow \mathbf{g}_i - [\mu_{i,j}] \mathbf{g}_j, \text{ update } (G^*, U)] \mathcal{O}(n)$ 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) 7 $i \leftarrow i - 1$ else 8 $i \leftarrow i+1$ 9 10 ・ロト ・ 戸 ・ ・ ヨ ト ・ ヨ ・ うへつ
Algorithm 0: LLL

Input: A basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ **Output:** An LLL-reduced basis $G = (\mathbf{g}_1, \ldots, \mathbf{g}_n)$ 1 $G \leftarrow copy(B)$ 2 $[(G^*, U) \leftarrow \text{GRAM-SCHMIDT } G] \mathcal{O}(n^3)$ while i < n do 3 for j = i - 1, i - 2, ..., 1 do $\left[\mathbf{g}_i \leftarrow \mathbf{g}_i - \left[\mu_{i,j} \right] \mathbf{g}_j$, update $(G^*, U) \mathcal{O}(n)$ 4 $\mathcal{O}(n^2)$ 5 if i > 1 and $\|\mathbf{g}_{i-1}^*\|^2 > 2\|\mathbf{g}_i^*\|^2$ then 6 Swap \mathbf{g}_{i-1} and \mathbf{g}_i , update (G^*, U) $i \leftarrow i - 1$ 7 else 8 $i \leftarrow i+1$ g 10 くぼう くさう くさう しき

Algorithm 0: LLL

29/32

Algorithm 0: LLL

Algorithm 0: LLL

э

Theorem.

イロト イボト イヨト イヨト

э

Theorem.

• LLL uses
$$\mathcal{O}\left(n^2 \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$$
 loop iterations.

э

- LLL uses $\mathcal{O}\left(n^2 \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$ loop iterations.
- LLL uses $\mathcal{O}\left(n^2\right)$ arithmetic operations over rationals per iteration.

- LLL uses $\mathcal{O}\left(n^2 \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$ loop iterations.
- LLL uses $\mathcal{O}\left(n^2\right)$ arithmetic operations over rationals per iteration.
- *U* represented with rationals of bit-lengths $\mathcal{O}\left(n \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$

- LLL uses $\mathcal{O}\left(n^2 \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$ loop iterations.
- LLL uses $\mathcal{O}\left(n^2\right)$ arithmetic operations over rationals per iteration.
- *U* represented with rationals of bit-lengths $\mathcal{O}\left(n \log \left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$

$$\Rightarrow \text{LLL uses } \widetilde{\mathcal{O}}\left(n^5 \log^2\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right) \text{ bit operations.}$$

Theorem.

- LLL uses $\mathcal{O}\left(n^2 \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$ loop iterations.
- LLL uses $\mathcal{O}\left(n^2\right)$ arithmetic operations over rationals per iteration.
- *U* represented with rationals of bit-lengths $\mathcal{O}\left(n \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$

$$\Rightarrow \text{LLL uses } \widetilde{\mathcal{O}}\left(n^5 \log^2\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right) \text{ bit operations.}$$

Theorem.

- LLL uses $\mathcal{O}\left(n^2 \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$ loop iterations.
- LLL uses $\mathcal{O}\left(n^2\right)$ arithmetic operations over rationals per iteration.
- *U* represented with rationals of bit-lengths $\mathcal{O}\left(n \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$

$$\Rightarrow \text{LLL uses } \widetilde{\mathcal{O}}\left(n^5 \log^2\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right) \text{ bit operations.}$$

Theorem.

 $\rightarrow \rm LLL$ compute a reduced basis in polynomial time.

Theorem.

- LLL uses $\mathcal{O}\left(n^2 \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$ loop iterations.
- LLL uses $\mathcal{O}\left(n^2\right)$ arithmetic operations over rationals per iteration.
- *U* represented with rationals of bit-lengths $\mathcal{O}\left(n \log\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right)$

$$\Rightarrow \text{LLL uses } \widetilde{\mathcal{O}}\left(n^5 \log^2\left(\max_{1 \le i \le n} \|\mathbf{b}_i\|\right)\right) \text{ bit operations.}$$

- $\rightarrow \rm LLL$ compute a reduced basis in polynomial time.
- \rightarrow LLL solve $2^{\mathcal{O}(n)} SVP$ in polynomial time.

Thank you for your attention!

Questions?

Lucas Petit

The LLL Algorithm: Lattice Basis Reduction

May 26, 2025

→ Ξ →

A D N A B N A B N

- Boudgoust, Katharina (Feb. 2023). *Hardness Assumptions in Lattice-Based Cryptography*. Crash-Course lecture notes, Aarhus University. Version du 2 février 2023.
- Lenstra Lenstra, Lovász (Dec. 1982). "Factoring polynomials with rational coefficients". In: *Mathematische Annalen* 261.4, pp. 515–534. ISSN: 1432-1807. DOI: 10.1007/bf01457454. URL: http://dx.doi.org/10.1007/BF01457454.