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Introduction
Lattices are mathematical objects that play an important role in many different areas such as
number theory, geometry and group theory, and they have been studied for more than 250 years.
The use of Euclidean lattices in cryptography started with the LLL algorithm in 1982 and its appli-
cations to cryptanalysis. In 1996, Ajtai showed that it was possible to build a hash function whose
security is based on worst-case instances of hard problems on lattices. The field then took off in the
late 2000s, first with Regev’s work that introduced the Learning With Errors problem and showed
how to build a secure public key encryption scheme from this problem, and then with Gentry’s
work in 2009 that was the first to build a fully homomorphic encryption scheme. Cryptographic
schemes based on lattices have gone in a few years from theoretical to practical constructions,
which are now among the final candidates for a transition to post-quantum cryptography.

History

� Carl Friedrich Gauß (1777-1855): use of lattices in number theory

� Hermann Minkowski (1864-1909): study the geometry of lattices

� 1982 LLL (Lenstra, Lenstra, Lovász): reduction of a lattice basis; early applications to fac-
torization of polynomials with rational coefficients and integer linear programming problems

� 1996 Miklós Ajtai’s work [Ajt96]: birth of lattice-based cryptography; introduction of the
Short Integer Solution problem (SIS); first worst-case to average-case reduction and construc-
tion of a one-way function

� 1998 NTRU scheme [HPS98]: defines an average-case problem on special lattices, (at the
time) no (known) connection to worst-case lattice problems, but very efficient

� 2005 Oded Regev’s work [Reg05]: introduction of the Learning With Erros problem (LWE)
together with a quantum worst-case to average-case reduction; public key encryption based
on LWE

� Since 2005: a plethora of cryptographic constructions based LWE and/or SIS; see this nice
website

– Gentry Peikert Vaikuntanathan [GPV08]: ”hash-then-sign” signatures, trapdoor func-
tions, identity-based encryption;

– Gentry [Gen09]: first fully homomorphic encryption schemes based on ideal latitces
(variants based on LWE starting from 2011);

– Lyubashevsky [Lyu09; Lyu12]: ”Fiat-Shamir with Aborts” signatures.

� Since 2009: structured variants of SIS and LWE

– Ring-SIS [LM06; PR06]

– Ring-LWE [Ste+09; LPR10]

– Module-SIS and Module-LWE [LS15]

� Since 2016: NIST’s post-quantum standardization process

– standardize post-quantum signatures and encryption

– 2022: 3 out of the 5 selected algorithms are based on structured lattice problems
(Dilithium, Falcon, Kyber)

� Since 2022: New hardness assumptions to obtain better/more cryptographic functionalities

– SIS and LWE with hints, e.g. [WW22], see SIS with Hints Zoo and Module-LWE with
Hints Zoo

– Lattice Isomorphism Problem (and its structured variants) [DW21b]
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Avantages

� Simple: cryptographic constructions can often be expressed with rather simple linear algebra

� Most constructions are provable secure in a strong sense: they rely on worst-case instances
of well-studied lattice problems

� Presumably quantum-resistant: up to today, no significant speed-up over classical algorithms
when considering quantum computers

� Very versatile: we know how to build a large variety of cryptographic primitives on lattices

Disadvantages

� When adapting known constructions from the discrete log setting to lattices, one often gets
issues with the smallness of a solution to SIS or the noise of LWE

� Most practical constructions are still less efficient than discrete log/factoring based problems

� Discrete Gaussian distributions can be very tedious to work with

General Principle

Learning With Errors
dimension n, modulo q

A ← Uniform in Zm×n
q

s ← Uniform in Zn
q

e is a small error

m ≥ n
and/or

SIS

(NTRU), find s
Given A A

s
+ e

m

n

Lattice

→ solve SVP

•

•

• • •

• • •

• • •

• •

• •

• •

b1

worst-case to average-case reduction

security proof

LWE-based
Encryption

SIS-based
Hashing & Signature

Figure 1: General principle of lattice-based cryptography
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Part I

Euclidean Lattices
In the first part of this crash course, we introduce the mathematical objects of Euclidean lattices,
together with some computational problems that are relevant for cryptography.

1 Definitions

We start with some important definitions related to Euclidean lattices. First of all, what is a
lattice?

Definition 1. An n-dimensional Euclidean lattice Λ is a discrete additive subgroup of Rn.

� Additive subgroup: 0 ∈ Λ, and for all x,y ∈ Λ, x+ y,−x ∈ Λ;

� Discrete: exery x ∈ Λ has a neighborhood in which x is the only lattice point. That is,
∀x ∈ Λ,∃ε > 0 such that B(x, ε) ∩ Λ = {x} (where B(x, ε) denotes the open ball of radius ε
around x)1.

If additionally Λ ⊂ Zn, we call it an integer lattice.

Example 2. The integer lattice Zn is a lattice. We can also scale the integer lattice by any real
number c, obtaining cZn. Or, we can rotate the integer lattice by some orthogonal matrix R ∈ Rn×n

(that is RT ·R = In), obtaining RZn.

Minima. For every lattice Λ, we define its (first) minimum as λ1(Λ) := minv∈Λ\{0}∥v∥. We
also consider its i-th minimum λi(Λ) defined as the smallest r such that Λ contains i linearly
independent vectors of norm at most r. More formally, λi(Λ) := minr>0{dim(span(Λ∩B(0, r))) ≥
i}. Here B(0, r) denotes the closed ball of radius r around 0.

•

•

•

•

•

•

•

•

•

•

•

•

• • • • •
λ1

λ2

Figure 2: A lattice of R2 with first and second minimum

Bases. For their use in cryptography, we need an algorithmic way to describe a lattice Λ. An
Euclidean lattice can be defined with the help of a finite basis B = (b1, . . . ,bk) ∈ Rn×k, where k ≤
n and the bi are all linearly independent. More precisely, the lattice is given as all the integer
linear combinations of the basis (column) vectors

Λ(B) =

{
k∑

i=1

zibi : zi ∈ Z

}
= {Bz : z ∈ Zn} .

The rank of a lattice is the number k of basis vectors needed. If k = n, we call the lattice
full-rank. We define the span of the lattice as the real vector space generated by its basis vectors.
That is

span(Λ(B)) := span(B) = {Bx : x ∈ Rn}.
1Throughout this course we implicitly mean the Euclidean ℓ2-norm when we talk about norms and distances.
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If the lattice has full rank n, then span(B) = Rn.
Note that a lattice basis B for a given lattice Λ is not unique. For any unimodular matrix U ∈

Zk×k (that is det(U) = ±1), the matrix B ·U also defines a basis of Λ.2

Lemma 3. For any two bases B,C ∈ Rn×k, there exists a unimodular matrix U such that C =
BU.

Recall that a basis is equivalently described as a generating set of vectors which are all linearly
independent. It is not enough that the linearly independent set of vectors are elements of the
lattice. A concrete counter example is given by the lattice Z2 and the two vectors (2, 0) and (0, 2).
They are linearly independent, but do not generate Z2 and hence are not a basis of Z2.

Example 4. The integer lattice Zn has basis In, the scaled lattice cZn has basis cIn and the
rotation lattice RZn has basis R.
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Figure 3: Two different bases for the same lattice in R2

Volume. Another useful mathematical notion is the (origin-centered) fundamental parallelepiped

of a lattice Λ having basis B ∈ Rn×k. It is defined as P(B) :=
{∑k

i=1 cibi : ci ∈ [−1/2, 1/2)
}
.

Note that every coset x+ Λ with x ∈ Rn has exactly one representative in P(B).

We further define the volume of a lattice as det(Λ) :=
√

det(BTB). If Λ is full-rank, and hence

B a square matrix, it simplifies to det(Λ) = |det(B)|. It can be shown that this equals the volume
of its fundamental parallelepiped.

Dual lattice. A last notion we need is the dual of a lattice Λ ⊂ Rn. It is defined as

Λ∨ := {w ∈ span(Λ): ⟨w,x⟩ ∈ Z∀x ∈ Λ}.

The following properties are true (without proof):

� Λ∨ is again a lattice

� If B is a basis for Λ, then is B(BTB)−T a basis for Λ∨

� If Λ is full-rank and hence B square, this simplifies to (BT )−1 being a basis for Λ∨

� det(Λ∨) = det(Λ)−1

� rank of Λ equals the rank of Λ∨

� (Λ∨)∨ = Λ

Example 5. One can see that Λ = Zn and their rotations RZn are self-dual (that is Λ∨ = Λ) and
that (cZn)∨ = 1/c · Zn.

2This is easy to see, using U · Zn = Zn.
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Figure 4: 2Z2 and its dual 1
2Z

2

Minkowski. We defined the first minimum of a lattice. But how small is it for a given lattice?
Minkowski provided an upper bound on the norm of a shortest non-zero vector in arbitrary lattices.
More concretely, for a lattice Λ of rank n and determinant det(Λ), it yields

λ1(Λ) ≤
√
ndet(Λ)1/n.

We will see a proof for the Minkowski bound in some special lattices later!

Example 6. For the integer lattice, any unit vector is a shortest vector and thus λ1(Zn) = 1.

Using Minkowski’s bound, we can show

Lemma 7. Let Λ be an n-rank lattice. It yields

� λ1(Λ) · λ1(Λ
∨) ≤ n,

� λ1(Λ) · λn(Λ
∨) ≥ 1.

Banaszczyk showed a even stronger relation between the lattice’s and its dual’s minima, known
as the transference theorem.

Theorem 8 ([Ban93, Lemma 1.5]). Let Λ be an n-rank lattice. It yields

1 ≤ λ1(Λ) · λn(Λ
∨) ≤ n.

Heuristically, one can estimate the expected norm of a shortest non-zero vector in randomly
chosen lattices by using the Gaussian heuristic, which slightly improves the Minkowski bound. It
says that for an n-rank lattice Λ with determinant det(Λ), we expect

λ1(Λ) ≈
√

n

2πe
· det(Λ)1/n.

q-ary lattices. There is a special class of lattices which plays an important role in lattice-based
cryptography. Given a matrix A ∈ Zm×n

q for some integers n,m, q ∈ N, we can define two lattices

Λq(A) = {y ∈ Zm : y = As mod q for some s ∈ Zn} and

Λ⊥q (A
T ) = {y ∈ Zm : ATy = 0 mod q}.

The first is sometimes called the image lattice as it is generated by the rows of A. Whereas the
second is called the kernel lattice as it contains all vectors that are orthogonal to the rows of A.

The following properties are true:

� Both Λq(A) and Λ⊥q (A
T ) are lattices

� Both lattices have rank m

6
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� They are connected via lattice duality, i.e., Λ⊥q (A
T ) = q ·Λq(A)∨ and Λq(A) = q ·Λ⊥q (AT )∨

� Assume that the n columns of A are linearly independent. Then, det(Λq(A)) = qm−n and
det(Λ⊥q (A

T )) = qn

� A slightly weaker for of Minkowski: λ1(Λ
⊥
q (A)) ≤

√
m · qn/m + 2

√
m

7
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2 Computational Problems

We now define some important computational problems on Euclidean lattices. There are of course
many more, and the study of their relations defines its own field of research. An overview of the
existing dimension-preserving reductions among them can be found here [SD16].

2.1 Shortest Vector Problem

The Shortest Vector Problem (SVP) asks to find a shortest non-zero vector of a lattice.

Definition 9 (SVP). An input to the Shortest Vector Problem SVP is a basis B of an n-rank
lattice Λ. The goal is to find a vector z ̸= 0 such that ∥z∥ = λ1(Λ).

As before, we implicitly assume the ℓ2-norm, but all definitions can also be formulated with
respect to other norms over Rn. In cryptography, we use a relaxed version of this problem, which
asks to find a shortest non-zero vector only up to some approximation factor γ.

Definition 10 (SVPγ). Let γ = γ(n) ≥ 1 be a function in the rank n. An input to the approximate
Shortest Vector Problem SVPγ is a basis B of an n-rank lattice Λ. The goal is to find a vector z ̸= 0
such that ∥z∥ ≤ γ · λ1(Λ).

For γ = 1, we recover the exact SVP problem from before.
The problem above requires to find a short vector, we call this the search variant of SVPγ .

But we only know how to build cryptographic schemes either on some (promise) decision variant
of SVPγ or on a more general search version of it.

The generalized search version asks to find not only one short vector of (approximate) norm λ1(Λ),
but to find n linearly independent vectors of (approximate) norm at most λn(Λ).

Definition 11 (SIVPγ). Let γ = γ(n) ≥ 1 be a function in the rank n. An input to the approximate
Shortest Independent Vector Problem SIVPγ is a basis B of an n-rank lattice Λ. The goal is to find n
linearly independent vectors z1, . . . , zn such that ∥zi∥ ≤ γ · λn(Λ) for all i ∈ {1, . . . , n}.

The next problem asks to distinguish between two cases (where we have the promise that the
input lattice is in one of the two cases).

Definition 12 (GapSVPγ). Let γ = γ(n) ≥ 1 be a function in the rank n. An input to the decision
Shortest Vector Problem GapSVPγ is a pair (B, r), where B is a basis of an n-rank lattice Λ and r >
0 is a real number. It is a YES instance if λ1(Λ) ≤ r, and it is a NO instance if λ1(Λ) > γ · r.
The problem asks to distinguish whether a given instance is a YES or a NO instance.

•

•

•

•

•

•

•

•

•

•

•

•

• • • • •
0

r

γr

• • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • • • •

0

r

γr

Figure 5: Examples of a NO and a YES instance of GapSVPγ

For all three approximate problems (Definition 10, 11 and 12) it holds that for increasing γ,
the problems do not get harder.
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2.2 Closest Vector Problem

The Closest Vector Problem (CVP) is another fundamental problem on Euclidean lattices. Given a
point in the span of the lattice, it asks to find a lattice vector closest to it. This time, we directly
define its approximate version.

Definition 13 (CVPγ). Let B be a basis of an n-rank lattice Λ(B) and γ = γ(n) ≥ 1 be a function
in the rank n. An input to the Closest Vector Problem CVPγ is a point t ∈ span(Λ). The problem
asks to find x ∈ Λ such that ∥t− x∥ = miny∈Λ∥t− y∥.

We can also define a decision version of CVP.

Definition 14 (GapCVPγ). Let γ = γ(n) ≥ 1 be a function in the rank n. An input to the
decision Closest Vector Problem GapCVPγ is a triple (B, t, r), where B is a basis of an n-rank
lattice Λ, t ∈ span(Λ) and r > 0 is a real number. It is a YES instance if dist(t,Λ) ≤ r, and it is
a NO instance if dist(t,Λ) > γ · r. The problem asks to distinguish whether a given instance is a
YES or a NO instance.

For cryptography, we consider another promise version of CVPγ .
3 That is, we are given a

target point that is promised to be somewhat close to the lattice. The problem now asks to find
the a lattice point closest to the target.

Definition 15 (BDDδ). Let B be a basis of an n-rank lattice Λ(B) and δ be a positive real. An
input to the Bounded Distance Decoding problem BDDδ is a point t ∈ span(Λ) of the form t = x+e,
where x ∈ Λ(B) and ∥e∥ ≤ δ. The problem asks to find x (or equivalently e).

For simplicity, we stated BDD with respect to the Euclidean norm. We remark, however, that
it is often phrased with respect to the infinity norm in other works.

•
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•

•
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• • • • •

t•

Bx

•

•

•

•

•

•

•

•

•

•

•
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• • • • •

t
•

Bx

δ

Figure 6: Examples of CVP and BDDδ in dimension 2

Somehow, SVP looks like CVP with the target point (close to) 0. But CVP does allow the
trivial solution 0, whereas SVP does not. Nonetheless, it is possible to give a reduction from SVPγ

to CVPγ as we will see later. There is also a reduction in the other direction, but increasing the
approximation factor from γ to

√
nγ2 [SD16].

2.3 Easy Computational Problems

As we will see shortly, both SVP and CVP are difficult computational problems. However, there are
also some problems on lattices that are easy to compute. For instance the following two problems.

Definition 16 (Membership). Given a basis B of an n-rank lattice Λ(B) and a vector v ∈ span(Λ),
decide if v ∈ Λ(B).

Definition 17 (Equivalence). Given two bases B and B′ ∈ Rn×k. Decide if Λ(B) = Λ(B′).

3Up to today, no cryptosystem has been proven secure directly based on CVPγ .
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2.4 Reductions

There are many reductions between the problems we just defined, and proving all of them is defini-
tively beyond this crash course. We refer the interested reader to Stephen-Davidowitz’s overview
of dimension-preserving reductions between lattice problems [SD16] for the relevant references.

For the solemn reason of mathematical curiosity, we prove that GapSVPγ reduces to GapCVPγ ,
as shown by Goldwasser et al. [Gol+99].

Theorem 18. There is a polynomial-time reduction from GapSVPγ to GapCVPγ for any input
lattice B and any approximation factor γ.

A naive approach to reduce the shortest vector problem to the closest vector problem would
be, given an input basis B to the SVP problem, to forward the instance (B,0) to the CVP oracle.
However, the oracle might simply return 0, which does not help to find a shortest vector. The
strategy of the reduction is thus to take a target w that is not the zero vector and input a modified
basis (defining a different lattice) that does not contain the target vector.

Proof. For every j ∈ [n], we define the basis B(j) := [b1, . . . ,bj−1, 2bj ,bj+1, . . . ,bn]. Note that
this basis does not contain bj .

Claim 1. Let v =
∑

i cibi be a shortest vector. Then, there exists an index j such that cj =
1 mod 2.

Claim 2. Let v =
∑

i cibi be a vector in Λ(B) such that cj = 1 mod 2 for some index j.

Then, u :=
cj+1
2 (2bj) +

∑
i ̸=j cibi ∈ Λ(B(j)) and ∥u− bj∥ = ∥v∥.

Claim 3. Let u = c′j ·2bj +
∑

i ̸=j cibi ∈ Λ(B(j)). Then, v := (2c′j−1)bj +
∑

i ̸=j cibj is non-zero
and lies in Λ(B) and it yields ∥v∥ = ∥u− bj∥.

The reduction now does the following: Given (B, r) as instance to GapSVPγ , the reduction

defines n instances to GapCVPγ by (B(j),bj , r) for j = 1, . . . , n. We will now show that if (B, r)

is a YES instance, then there exists an index j such that (B(j),bj , r) is a YES instance. If (B, r)

is a NO instance, then is (B(j),bj , r) a NO instance for every index j. Equivalently, we show

that (B(j),bj , r) is not a NO instance, so there exists an index j such that (B, r) is not a NO
instance.

Further, SVPγ is no easier than SIVPγ [SD16] which is itself no easier than GapSVPγ [Ban93].4

2.5 Complexity and Algorithms

Many lattice problems, and in particular the SVP and CVP problems defined above, are shown to
be NP-hard for small (i.e., constant) approximation factors, e.g., [Ajt98]. However, for cryptogra-
phy we need γ = poly(n).

In 1982, Lenstra, Lenstra and Lovász [LLL82] designed the now very popular LLL algorithm,
that solves in polynomial time SVPγ for γ exponentially large in the lattice rank. Later in 1987,

4Note that the approximation factors are not preserved through the reductions. In the reduction from GapSVPγ
to SIVPγ it is mapped from γ to nγ, where n is the lattice rank. And in the reduction from SIVPγ to SVPγ it is
mapped from γ to

√
nγ.

10
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γ
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√
n poly(n) 2O(n)

cost
to solve 2Ω(n) 2Ω(n) poly(n)
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Complexity

NP-hard

NP ∩ CoNP

PCrypto

Figure 7: Schematic difficulty of GapSVPγ

Schnorr showed a trade-off between running time and approximation factor which can be achieved
by an algorithm solving SVPγ [Sch87]. In practice, it is implemented by the BKZ algorithm by
Schnorr and Euchner [SE94], which can be seen as a heuristic variant of Schnorr’s algorithm.
Following this trade-off, the best known algorithm to solve SVPγ with γ polynomial in the lattice

rank n has an exponential running time of 2Õ(n) and, conversely, the best known algorithm to
solve SVPγ with polynomial running-time can only achieve an exponential approximation factor γ

of 2Õ(n). Here, the term Õ(n) designs the big O notation which hides logarithmic factors in n.
The above leads to the following conjecture which forms the starting point of lattice-based

cryptography. Note that all asymptotic statements are with respect to the lattice rank n, unless
we state it otherwise.

Conjecture 19. There is no polynomial-time classical or quantum algorithm that approximates
the lattice problems SVPγ , GapSVPγ or SIVPγ to within polynomial factors γ (for all possible
input lattices).

The overall strategy to solve lattice problems is mostly the same: Start with an arbitrary basis
of the lattice (which potentially has vectors of large norm) and reduce it to a different basis of the
lattice made of short vectors. We call this process lattice reduction. The short basis helps solving
the lattice problem:

� SVPγ : return the first vector

� SIVPγ : return the whole basis

� CVPγ : use Babai’s round-off algorithm

Concretely, the best known algorithms for solving exact SVP (i.e., γ = 1) have the following
asymptotic complexities:

� Classical algorithm: time 2O.292n+o(n)

� Quantum algorithm: time 20.265n+o(n)

3 Crypto Dilemma

The way lattices can by used in
cryptography is by no means obvious.

D. Micciancio & O. Regev

Despite their assumed quantum-resistance, the computational lattice problems we have seen
before seem unlikely to directly serve for the construction of (provably secure) cryptographic prim-
itives. This is because their definition relies on arbitrary lattices, what we commonly call worst-
case problems, as they are in general not hard to solve for any lattice, but assumed to be hard

11
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to solve in the worst-case. When designing cryptographic schemes, however, we usually need
the hardness of random instances of some problem, what we call average-case problems. This
challenge was solved with the help of intermediate lattice problems, namely the Short Integer So-
lution (SIS) [Ajt96] and Learning With Errors (LWE) [Reg05] problems, which are formulated as
average-case problems, making them suitable for cryptography. Astonishingly, these intermediate
lattice problems have been shown to be at least as hard to solve as some worst-case lattice prob-
lems, such as GapSVPγ or SIVPγ , for suitable parameter choices. Thus, Conjecture 19 which states
that SIVPγ and GapSVPγ are classically and quantumly intractable implies that SIS and LWE
are also classically and quantumly intractable. More details in the next lecture!

There have been trials to build public key encryption directly on worst-case problems, but
none of them could be proven secure and at the same time withstood cryptanalysis for practical
parameter settings. To name one concrete cryptosystem, Goldreich et al. [GGH97] introduced the
GGH cryptosystem, which can be seen as a lattice analogue of the McEliece cryptosystem. From
a high level, the secret key is given by a ”good” (i.e., short) basis, where the public key is given by
a ”bad” (e.g., large) basis. For encryption, the message is encoded in a short vector, which is than
added to a vector of the lattice (with respect to the bad basis). Knowing the good basis helps to
recover the corresponding lattice point and hence the ”shift” vector which encodes the message.

12
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Figure 8: The Short Integer Solution (SIS) problem.

Part II

Average-Case Lattice Problems
In this part of the course, we introduce two problems on a specific class of lattices, that are very
important for lattice-based cryptography.

4 Short Integer Solution

The Short Integer Solution problem, abbreviated by SIS, was introduced by Ajtai [Ajt96].

4.1 Definitions

Definition 20 (SIS). Let n,m and q be positive integers and β be a positive real. Given m
independent vectors aj sampled uniformly at random over Zn

q , forming the columns of a matrix A ∈
Zn×m
q , the problem SISn,q,β,m asks to find a nonzero vector z ∈ Zm of norm ∥z∥ ≤ β such that

Az =
∑

ziai = 0 mod q.

On the parameters. We observe that the problem becomes harder if for fixed m,n and q we
decrease the norm bound β, as the solution space gets smaller. However, the norm bound β and
the number m of vectors must be taken large enough to guarantee a solution. This is the case
when we take m ≥ log(q) and β ≥

√
m.5 Then, there are 2m ≥ qn vectors x ∈ {0, 1}m, so by

the pigeonhole principle there must be two distinct x ̸= x′ ∈ {0, 1}m such that Ax = Ax′ and
hence z = x − x ∈ {−1, 0, 1}m is a solution of norm at most β. In particular, parameters are
mostly taken such that there are multiple solution to it. We say that SIS is a surjective problem.
Furthermore, the SIS problem becomes easier if we increase the number m (we can simply ignore
some columns) and harder if we increase the dimension n.

Hidden Lattice Problem. You may now wonder why this part is called average-case lattice
problems. Where is the lattice? We can interpret SIS as a problem over random q-ary lattices.
More precisely, SIS defines an instance of SVPγ (Def. 10) in the random m-rank lattice

Λ⊥q (A) = {y ∈ Zm : Ay = 0 mod q},

where the approximation factor γ depends on the norm β. More concretely, γ ·
√
m · qn/m = β,

where we used that λ1(Λ
⊥
q (A) ≤

√
m · qn/1.

5All logarithms are with respect to the base 2, unless made explicit.
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Inhomogeneous version. To make things more confusing, sometimes the name SIS is used for
a slightly different problem: instead of asking to find a short nonzero vector z that lies in the
kernel of A modulo q, the inhomogeneous SIS problem (that we abbreviate in the following ISIS)
asks for a given (random) target vector t ∈ Zn

q (and a uniform matrix A) to find a short nonzero
vector z such that Az = t mod q. In other words, SIS is the special case of ISIS, where t = 0. But
from a lattice perspective, SIS is much more convenient to work with. Another problem consists in
sampling some short vector z, then computing t = Az mod q and asking to recover the unique z
(or distinguish t from a random vector). Sometimes this problem is also called ISIS, but personally,
I prefer the name Knapsack problem to avoid confusion. It is quite a different problem, as it always
possess a solution and we can use it both in a surjective and in an injective regime.

Hermite Normal Form. When reading recent works on (practical) cryptographic primitives
based on SIS, the problem is often presented in a slightly different way. Without loss of generality,
we can assume that the n leftmost columns of the public matrix form an invertible matrix.6 That
is, A = [A1|A2] with A1 ∈ Zn×n

q and A2 ∈ Zn×m−n
q . In this case, we can equivalently work with

the matrix A−11 ·A = [In|A], where A = A−11 A2. So, it suffices to sample A uniformly at random
over Zn×m−n

q and treat In implicitly.

4.2 Hardness

As we have seen, SIS defines an instance of SVP over a (1) random (2) q-ary lattice. Both properties
together make the lattice rather special. Whereas most experts on lattices agree that there exist
hard instances of SVP, the situation is not intuitively clear for such special lattices. Fortunately,
and maybe also a bit surprisingly, Ajtai [Ajt96] (and subsequent works [MR07; GPV08; MP13])
showed that SIS (under specific parameter choices) is at least as hard as solving approximate SIVP
and approximate GapSVP on any lattice. Such reductions are often referred to as worst-case to
average-case reductions.

Theorem 21. For any m = poly(n), any β > 0 and any q ≥ β · poly(n), solving SISn,q,β,m with
non-negligible probability is at least as hard as solving the problem GapSVPγ and the problem SIVPγ

on arbitrary n-rank lattices with overwhelming probability, for some γ = β · poly(n).

Note that there is a change of lattice ranks and approximation factors here: The reduction
starts from GapSVP in a lattice of rank n and goes to SIS which describes a lattice of rank m.
Moreover, the approximation factor changes as well: We start with an approximation factor γ for
GapSVP and go to a different approximation factor γ′ when interpreting SIS as a shortest vector
problem over a random q-ary lattice.

For instance, [GPV08, Theorem 9.2] requires q ≥ β ·
√
n · ω(log n) and γ ≥ β ·

√
n · ω(

√
log n),

where ω(f(n)) denotes a function that grows asymptotically faster than f(n). Often, the nota-

tion γ = Õ(
√
n) ·β is used, where the Õ notation hides logarithmic factors. This result also applies

to ISIS with a randomly chosen target t. We skip the proof (and even its idea) here, but refer
to [Pei16a, Sec. 4.1] for an accessible high level sketch. Note that the above theorem requires a
polynomial ratio between modulus q and norm bound β. When setting concrete parameters (secur-
ing against best known algorithms) this ratio is often not respected. Hence, practical instantiations
of SIS are most of the times not covered by worst-case to average-case reductions.

4.3 Interlude: Ajtai’s Hash Function

Even though this course mainly focuses on the hardness assumptions made in lattice-based cryp-
tography, we can do a very short detour and see how SIS serves as a hardness assumption to build
collision-resistant hash functions.

Consider the hash function fA : {0, 1}m → Zn
q which is described by a matrix A ∈ Zn×m

q

which is sampled uniformly at random. The function is defined as fA(z) = Az mod q. Note

6We can always delete some columns of A to achieve this.
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that |{0, 1}m| = 2m and |Zn
q | = qn. Thus, we require m > n log q to ensure that the function

is a compression. Typically, one chooses m ≈ 2n log q to obtain a compression factor of 2. Note
that any collision z ̸= z′ immediately provides a solution to SIS with ∥z− z′∥ ≤

√
m =: β. The

reasoning easily generalizes to the domain {0, . . . , d− 1}m for any positive integer d ≥ 2.
On the positive aspects, we can see that this hash function is very simple and involves only

addition and multiplication modulo q. On the negative side, as it is presented here, it is rather
inefficient. For concreteness, take q = n2 and m = 2n log q = 4n log n. The description of the hash
function fA is of size nm log q = 4n2 log n, similarly the computation of Az. Efficient constructions
rely on structured lattices, as we will see later in this course. In practice, one uses the SWIFFT
hash function introduced by Lyubashevsky et al. [Lyu+08].

Leftover Hash Lemma. Quite useful is the following observation: If we sample A uniformly
at random over Zn×m

q as well as z uniformly at random over {0, 1}m, we can use the leftover hash
lemma to argue that Az mod q is statistically close to a uniform random vector over Zn

q as long
as m is large enough (compared to n and q). In other words, the decision variant of the Knapsack
problem mentioned earlier becomes vacuously hard for large m. More precisely:

Lemma 22 (LHL). For some positive integers m,n and some prime q, the family of hash func-
tions H = {fA : {0, 1}m → Zn

q }A∈Zn×m
q

is universal. If furthermore, m ≥ n log q − 2 + 2 log(1/ε)

for some positive real ε, then it yields

∆((A,Az), (A,u)) ≤ ε,

where A← U(Zn×m
q ), z← U({0, 1}m), and u← U(Zn

q ).

Here ∆ denotes the statistical distance.

Proof. Recall that the family of hash functions H is universal if PA←U(Zn×m
q )[fA(z1) = fA(z2)] =

1/|Zn
q | = q−n for any z1 ̸= z2 ∈ {0, 1}m. Let z1 ̸= z2 such thatAz1 = Az2. Let us start by focusing

on the first row of A. As z1 = (z1j)j ̸= z2 = (z2j)j , there is at least one coefficient k ∈ {1, . . . ,m}
such that z1k ̸= z2k. Without loss of generality, we assume k = 1. For the first row ofA = (aij)ij , it
yields

∑m
j=1 a1j ·(z1j−z2j) = 0 mod q. This is equivalent to a11 = (z21−z11)−1

∑m
j=2 aj ·(z1j−z2j).

Here we used that q is prime and thus Zq is a field and hence every nonzero element is invertible.
In other words, the first coefficient of the first row of A is uniquely defined by the rest of the
coefficients of the first row (and the fixed vector z1 and z2). Thus, this event happens with
probability 1/q. As every row of A is sampled independently from the others, we obtain by the
union bound the universal property of the hash function family.

Now we simply use the general LHL as stated for instance in Lemma 2.1 in [Dod+08]. By using
that the min-entropy of U({0, 1}m) is m and the size of the set Zn

q is qn we get the requirement m ≥
n log q − 2 + 2 log(1/ε).

For example, if ε = 2−n, the condition m ≥ 3n log q ≥ n log q − 2 + 2n is sufficient.

5 Learning With Errors

The Learning With Errors problem, abbreviated by LWE, was introduced by Regev [Reg05; Reg09].
Regev received the Gödel prize for his work in 2018.

5.1 Definitions

We start by defining the LWE distribution, which provides noisy linear equations.

Definition 23 (LWE distribution). Let n and q be positive integers and let χ be a distribution
over Z. For a fixed secret s ∈ Zn

q , the LWE distribution As,χ over Zn
q × Zq is obtained by choos-

ing a← U(Zn
q ), e← χ and outputting (a, b = ⟨a, s⟩+ e mod q).
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Figure 9: The LWE problem in its search variant. The number of rows m of A can be seen as the
number of LWE samples and the number of columns n of A defines the dimension of the LWE
problem.

We call s the secret and e the noise or error of the distribution. The LWE problem comes
in two different variants. The first is a search problem and asks to find the secret s (or equiv-
alently e) and the decision problem asks to distinguish between the LWE distribution and the
uniform distribution.

Definition 24 (Search LWE). Let m be a positive integer. Given m independent samples (ai, bi) ∈
Zn
q ×Zq from As,χ for a uniformly random s ∈ Zn

q . The problem search-LWEn,q,χ,m asks to find s.

We usually write A ∈ Zm×n
q as the matrix whose rows are given by the LWE samples ai.

Without the noise (i.e., χ = {0}), the problem becomes easy, as we can simply solve the system of
linear equations with respect to the secret s and recover it by linear algebra. It is thus the noise
that makes the problem hard!

Definition 25 (Decision LWE). Let m be a positive integer. Given m independent samples (ai, bi) ∈
Zn
q × Zq that are either drawn from As,χ for a uniformly random s ∈ Zn

q or drawn from the uni-
form distribution U(Zn

q × Zq). The problem dec-LWEn,q,χ,m asks to distinguish both cases with
non-negligible advantage.

On the parameters. Let B denote the bound on the norm of noise vectors sampled from χ.
Then one can see that the LWE problem gets harder if the ratio B/q or the dimension n increases.
The parameter m usually doesn’t has a large impact on the security, as long as it is not too big.7

Whereas SIS is mostly used in the setting where multiple solutions exist, LWE parameters are
usually chosen such that the solution is unique. We say that LWE is injective.

Hidden Lattice Problem. As for SIS, we can interpret LWE as a problem over random q-ary
lattices. More precisely, LWE defines an instance of BDD (Def. 15) in the random lattice

Λq(A) = {y ∈ Zm : y = As mod q for some s ∈ Zn},

where b is the target point whose distance to the lattice is given by the noise e← χm.

Noise distribution. One can see that the choice of the noise distribution χ has a direct impact
on the hardness of the problem. If we would set it to the uniform distribution χ = U(Zq),
then e completely hides the hidden s and thus it is vacuously hard to distinguish LWE instances
from uniform ones. On the other extreme, if the noise distribution is too small, say a Bernoulli

7Agora and Ge [AG11] showed that if one has roughly n2B+1 samples, then one can solve LWE in time
roughly n2B .
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distribution χ = Ber(p) with a very small probability p of sampling 1, then the problem becomes
easy to solve. In this case e is a very sparse binary polynomial and one can simply hope to
have enough equations without noise. So what are typical choices for χ? For cryptography to
work, we need χ to provide error vectors of small norms but with enough entropy. In theoretical
results, χ is often a discrete Gaussian distribution DZ,σ.

8 In practical constructions, χ is often the
uniform distribution over a set {−β, . . . ,+β} for some small integer β (say β = 3) or the binomial
distribution of small parameters (say 3).

Secret distribution. To add even more variation, one can also consider different distributions
for the secret. In the ”standard” version, the secret is sampled uniformly at random over Zn

q .
As for the noise, we can define variants where the secret follows a Gaussian distribution (cf.
Hermite normal form), or the uniform distribution over a small set. Small secrets and noises not
only improve efficiency of cryptographic schemes, they are also important in the setting of fully
homomorphic encryption. The performance of such schemes crucially depends on the size of the
secret. It has been shown that the exact distribution of the secret does not matter much for the
hardness as long as the distribution has enough min-entropy [BD20].

(Re-)randomization. Sometimes, it can be convenient to (re-)randomize the secret. In par-
ticular, this is used when going from LWE with a fixed secret s (called worst-case in [Reg05])
to LWE with a random secret s′ (called average-case). To do so, we transform a sample from As,χ

to As+t,χ, by using the linearity of matrix-vector multiplications. Given an instance (A,b), we
compute (A,b+At) = (A,A(s+ t) + e). We can also re-randomize the noise by adding e′ to b,
that is (A,b+ e′) = (A,As+ (e+ e′)). Note, however, that this increases the amount of noise.

Search-to-decision. As often the case, regarding their use in cryptography, the decision problem
is much more convenient than the search problem. Luckily, both problems are equivalent (up to
some polynomial loss in the advantage), as we see in the following.

Lemma 26 ([Reg05, Lem. 4.2]). Let q = poly(n). The problems search-LWE and dec-LWE are
computationally equivalent.

Note that the original proof was restricted to prime moduli that are polynomial in n, but
subsequent works generalized it to essentially any modulus, see references in [Pei16a, Sec. 4.2.2].

Hermite Normal Form. As for SIS, when reading recent works on cryptographic construc-
tions based on LWE, the LWE problems are often presented in a slightly different way. Instead of
sampling s uniformly at random over Zn

q , it is drawn from the same distribution as the noise e,
i.e., s← χn. We then say that LWE is in its Hermite normal form and write HNF-LWE. Apple-
baum et al. [App+09] gave a very simple proof why HNF-LWE and LWE are equivalent, for both
the search and the decision versions.

Lemma 27. The problems HNF−LWE and LWE are computationally equivalent, where the mod-
ulus q and the dimension n are preserved.

Learning Parity With Noise. When Regev introduced LWE, he actually presented it as a
generalization of the classical coding problem Learning Parity With Noise (LPN). When specify-
ing q = 2 and χ a Bernoulli distribution over {0, 1}, LWE coincides with LPN. However, both
problems seem to behave quite differently. Whereas LWE is a geometric problem, that is con-
nected to lattices and where we require the noise to have small Euclidean norm (or more generally
a small ℓp-norm), LPN is a decoding problem, where the distance between code words is mea-
sured via the Hamming distance. It is still a great research direction to better understand the
relationship between both problems.

8More on discrete Gaussians in Section 5.2.
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Learning With Rounding. In 2012, Banerjee et al. [BPR12] introduced a deterministic variant
of LWE, namely the Learning With Rounding (LWR) problem. One advantage of using LWR instead
of LWE is that one doesn’t need to sample an error from some specific distribution. In particular
for (discrete) Gaussian error distributions, this task can be tedious. Before we formally present this
deterministic variant of LWE, we need a method to round elements from Zq to Zp, where p ≤ q.

The modular rounding function ⌊·⌉p : Zq → Zp is defined as ⌊x⌉p =
⌊(

p
q

)
· x

⌉
mod p, where ⌊·⌉ is

the standard rounding function, mapping every y ∈ R to its closest integer ⌊y⌉ ∈ Z. The modular
rounding function extends component-wise to vectors over Zq and coefficient-wise to polynomials
in Zq[x]. One can deterministically lift any element from Zp back to Zq by mapping y ∈ Zp

to ⌊q/p · y⌉ ∈ Zq. This induces a rounding error whose absolute value is bounded above by q/p,

i.e.,
⌊
q/p · ⌊y⌉p

⌉
= y + e, where |e| ≤ q/p.

Now, an LWR sample is of the form (a, b = ⌊⟨a, s⟩⌉p) ∈ Zn
q × Zp and we can define the search

and decision LWR problems in an analogue manner to LWE. The hardness of LWR is based on
the hardness of LWE. More precisely, there was a sequence of works that proved reductions (under
specific parameter conditions) from LWE to LWR. There are also structured variants of LWR,
that follow the same design principles as the one for LWE (cf. later lectures of this course).

5.2 Discrete Gaussian Distributions

Theoretical works on LWE, in particular those that show its worst-case hardness, use a Gaussian
noise distribution. Furthermore, all lattice trapdoor functions rely on Gaussian distributions as
well. More precisely, we often need discrete Gaussian distributions, which are much more trickier
to work with than their continuous counterparts. Let us properly define all the notions in the
following.

Let s > 0, c ∈ Rn and x ∈ Rn, we define the (spherical) Gaussian function ρs,c and the
Gaussian distribution Ds,c of width s and center c as

ρs,c(x) = exp(−π∥x− c∥2/s2) and Ds,c(x) = ρs,c(x)/s
n.

If it is origin-centered, we omit the subscript c = 0. Gaussian distributions have two important
properties:

Tail bound: an element sampled from a Gaussian distribution has (with high probability) small
norm.

Sum: the sum of two Gaussian variables is again a Gaussian variable, i.e., Ds +Dt = D√s2+t2 .

Lemma 28. Let s > 0 and x ∈ Rn, then Prx←↩Ds [∥x∥ ≥
√
ns] ≤ 2−n.

Discrete Gaussian. For any lattice Λ ⊂ Rn, width s > 0 and center c ∈ Rn, we define the
discrete Gaussian distribution DΛ,s,c obtained by conditioning Ds,c to the event of x ∈ Λ. For
x ∈ Λ we get:

DΛ,s,c(x) =
Ds,c(x)∑

y∈Λ Ds,c(y)
.

Smoothing parameter. Unfortunately, the discrete Gaussian distribution doesn’t behave auto-
matically like a continuous one. For example, in the continuous case, it yields Ds,c(x) = Ds,0(x−c).
However, in the discrete case, it yields DΛ,s,c(x) = DΛ+c,s,0(x− c) ̸= DΛ,s,0(x− c). Furthermore,
sums of Gaussians are in general not Gaussian anymore. The smoothing parameter of a lattice Λ
gives a threshold above which a discrete Gaussian very much behaves like a continuous one. It
is denoted by ηε(Λ) for some ε > 0 and was introduced by Micciancio and Regev [MR07]. It is
formally defined as the smallest s > 0 such that ρ1/s(Λ

∨ \ {0}) ≤ ε. As ρ1/s is continuous and
strictly decreasing, the same holds for ηε.

Luckily, we can bound it from above and below with the help of the first minimum of its dual
lattice.

18



Lattice-Based Cryptography (May 30, 2025) Katharina Boudgoust

Figure 10: Graph of the probability density function of a continuous Gaussian in dimension n = 1
and of the probability mass function of a discrete Gaussian over the lattice Λ = Z.

Lemma 29 ([Ban93, Lem. 1.5] and [Reg05, Claim 2.13]). Let Λ be an n-dimensional lattice
and ε = exp(−n), it holds √

n√
πλ1(Λ∨)

≤ ηε(Λ) ≤
√
n

λ1(Λ∨)
.

Example 30. For the integer lattice Λ = Zn, we know that λ1(Λ
∨) = 1 and thus

√
n/π ≤

ηε(Zn) ≤
√
n for ε = exp(−n).

Once we are above the smoothing parameter, the total Gaussian measure of any translation of
the lattice is essentially the same.

Lemma 31 ([MR07, Lem. 4.4]). Let Λ be an n-dimensional lattice. Then, for any ε ∈ (0, 1), s ≥
ηε(Λ) and c ∈ Rn, we have ρs,c(Λ) ∈

[
1+ε
1−ε , 1

]
· ρs(Λ).

A very useful property is that, once the Gaussian width s exceeds the smoothing parameter,
sampling a continuous Gaussian on Rn (or a discrete Gaussian of some larger lattice) and reducing
it modulo the lattice provides a distribution that is statistically close to the uniform distribution
over the lattice cosets.

Lemma 32 ([MR07, Lem. 4.1]). Let Λ be an n-dimensional lattice, ε > 0, and s > ηε(Λ). Then
the distribution of the coset e+Λ, where e← Ds, is within statistical distance ε/2 of the uniform
distribution over the cosets of Λ.

Lemma 33 ([GPV08, Cor. 2.8]). Let Λ,Λ′ be n-dimensional lattices with Λ′ ⊆ Λ. Then, for
any ε ∈ (0, 1/2) and s ≥ ηε(Λ

′), and any uc ∈ Rn, the distribution of (DΛ,s,c mod Λ′) is within
statistical distance 2ε of the uniform distribution over (Λ mod Λ′).

It now holds, if s, t > ηε(Λ), the sum of discrete Gaussians on the same lattice defines again a
discrete Gaussian distribution:

DΛ,s +DΛ,t = DΛ,
√
s2+t2 .

5.3 Hardness

As we have seen, LWE defines an instance of BDD over a (1) random (2) q-ary lattice. As for SIS,
there is a rather surprising result due to Regev [Reg05] that shows that LWE (for uniform secret
and Gaussian noise) is at least as hard as solving approximate SIVP and approximate GapSVP on
any lattice.

Theorem 34. For any m = poly(n), any modulus q ≤ 2poly(n) and any discrete Gaussian error
distribution χ of size αq ≥ 2

√
n (where 0 < α < 1), solving (search/decision) LWEn,q,χ,m with

non-negligible probability is at least as hard as solving quantumly the problem GapSVPγ and the
problem SIVPγ on arbitrary n-dimensional lattices with overwhelming probability, for some γ =

Õ(n/α).
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Clearly, the approximation factor γ decreases for larger α. The word quantumly here means
that any efficient solvers for LWE (either quantum or classic) only leads to quantum solver for SIVP
and GapSVP. Later works dequantized this reduction, but only work for GapSVP [Pei09; Bra+13].
We skip the proof (and even its idea) here, but refer to [Pei16a, Sec. 4.2] for a high level sketch.

Note that the theorem above is shown for uniform secrets over Zn
q and discrete Gaussian noise

distributions. Regarding other choices of secret/noise distributions, there are various results. All
of them show that (under some increasing parameters) the LWE variant with different secret/noise
distribution is at least as hard as ’standard’ LWE with uniform secret and Gaussian noise. Such
reductions exist for secrets sampled over the uniform distribution over the set {−β, . . . , β}n for
small values of β [Gol+10; Bra+13] as well as for the noise sampled over the uniform distribution
over the same set [MP13; DM13]. However, in the latter case, we have some bound on the number
of samples m that we can provide. If m gets too big, there are polynomial-time attacks [AG11;
MP13].

More recently, Brakerski and Döttling introduced the notion of entropic hardness, and showed
that LWE remains hard to solve for any secret distribution that has enough min-entropy [BD20].

In practical schemes, we can also find secret/noise distributions for which no hardness reductions
exist. For instance, the finalist Kyber of the NIST post-quantum project9 uses centered binomial
distributions. The alternate finalist Frodo uses approximations of rounded Gaussian distributions.
An earlier candidate, LAC, uses the distribution over ternary vectors with fixed Hamming weight.
The hardness of the corresponding LWE variant is argued by the fact that no lattice-attack exploits
the concrete structure of the distributions, only the size of the resulting coefficients.

5.4 Interlude: Regev’s Public Key Encryption

5.4.1 The original description

Let m,n and q be positive integers and χ a distribution over Z. For simplicity, assume that
the LWE secret is sampled uniformly at random over Zn

q . The message space is {0, 1}, that is, we
are going to encrypt a single bit.

KGen: Sample s ← U(Zn
q ), A ← U(Zm×n

q ) and e ← χm. Return sk = s and pk = (A,b) =
(A,As+ e).

Enc: For ν ∈ {0, 1}, sample r ← U({0, 1}m) and return the ciphertext (u, v), where uT = rTA
and v = rTb+ ⌊q/2⌋ · ν.

Dec: Compute v − uT s. If the result is closer to 0 than to ⌊q/2⌋, then output ν′ = 0. Else
output ν′ = 1.

Correctness. We require χm to provide short noise elements of Euclidean norm at most q
8
√
m
.

It yields

v − uT s = rT (As+ e) + ⌊q/2⌋ · ν − rTAs

= rTe+ ⌊q/2⌋ · ν.

Now, r is a binary vector and e sampled from χ, where χ provides elements of short norms.
More precisely

|rTe| ≤ ∥r∥ · ∥e∥ ≤
√
m · q

8
√
m

= q/8.

For ν = 0 the value of v− uT s will be close to 0 and for ν = 1 the value will be close to ⌊q/2⌋.
9https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
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Security. For security, we require m ≥ 3(n + 1) log q. IND-CPA security is proven in a game-
based model. Game 0 is the IND-CPA game using the encryption scheme described above. In
Game 1, the second part b of the public key isn’t sampled honestly (as an LWE instance), but
sampled uniformly at random over Zm

q . Assuming the hardness of decision LWE, Game 0 and
Game 1 are computationally indistinguishable. In Game 2, the ciphertext (u, v) is now replaced
by a random element sampled over Zn

q × Zq. Note that (rTA, rTb) = rTA′, where A′ = (A|b).
As both A and b are random, so is A′. Using the leftover hash lemma (Lemma 22), the ciphertext
is statistically close to uniform and so the adversary can’t distinguish Game 1 and Game 2. Now,
in Game 2, the ciphertext contains no information on the encrypted message, so the adversary can
only guess.

Dual Regev. As detailed out by Gentry et al. [GPV08, Sec. 7.1], it is possible to define a dual
version of the Regev encryption scheme, where the roles of the LHL and the LWE problem are
switched. More precisely, it uses the LHL to argue for the statistical closeness to uniform of the
public key and uses then the computational hardness of decision LWE to argue for the IND-CPA
security.

5.4.2 A better template

In the security proof we argued statistical closeness using the LHL. As we already need to use
computational assumptions, a natural question is whether we can avoid the LHL and only use
computational arguments instead. Indeed, we can do so, however, we need the LWE secret to be
short. For simplicity, we assume m = n and thus that A ∈ Zn×n

q is quadratic.

KGen: Sample A← U(Zn×n
q ) and s, e← χn. Return sk = s and pk = (A,b) = (A,As+ e).

Enc: For ν ∈ {0, 1}, sample r, f ← χn and f ′ ← χ and return the ciphertext (u, v), where uT =
rTA+ fT and v = rTb+ f ′ + ⌊q/2⌋ · ν.

Dec: Compute v − uT s. If the result is closer to 0 than to ⌊q/2⌋, then output ν′ = 0. Else
output ν′ = 1’

Correctness. We require χ to provide short elements of absolute value at mostB such that 2mB2+
B < q/8. It yields

v − uT s = rT (As+ e) + f ′ + ⌊q/2⌋ · ν − (rTA+ fT )s

= rTe− fT s+ f ′ + ⌊q/2⌋ · ν.

Now, e, s, f and f ′ are all sampled from χ, where χ provides elements of short norms. More
precisely

|rTe− fT s+ f ′| ≤ ∥r∥ · ∥e∥+ ∥f∥ · ∥s∥+ |f ′| ≤ 2(
√
mB ·

√
mB) +B < q/8.

For ν = 0 the value of v− uT s will be close to 0 and for ν = 1 the value will be close to ⌊q/2⌋.

More message bits. In order to encrypt messages of k = poly(n) bits, one can replace the
vectors r and f by matrices R,F← χn×k, defining UT = RTA+FT and v = RTb+ f′+⌊q/2⌋ ·m.

Security. Now, to argue security, we argue several times with HNF-LWE. First, we replace (as
before) the public key by some uniform vector b. Second, we see that (rTA+ fT , rTb+ f ′) defines
another instance of LWE (in HNF) with secret r, public matrix (A,b)T and noise (f, f ′). So, we
can replace the ciphertext by a uniform random element and again the attacker can now only guess
within the IND-CPA game.

21



Lattice-Based Cryptography (May 30, 2025) Katharina Boudgoust

Improvements. One improvement that is used in the literature, is to use a more compact
random seed together with a pseudo-random function to compute A = PRF(seedA). This safes
storage, as one doesn’t need to send the full matrix in the public key, while still guaranteeing fresh
randomness for every key pair. This becomes even more important when considering PKE schemes
as key-exchange mechanisms (KEM). Frodo [Bos+16] is a KEM which starts from this textbook
construction together with the random seed idea (and some other improvements).

6 Connections between SIS and LWE

Decision LWE to Search SIS. This reduction is often used for attacks on LWE (called the
dual attack, for more details see [APS15]). Given as input an LWE challenge (A,b) ∈ Zm×n

q ×Zm
q .

ForwardA to an SIS-oracle which will respond with a short non-zero vector z ∈ Zm of norm ∥z∥ ≤ β
such that zTA = 0 mod q. Now, one can computer zTb. If the resulting element is short, one
guesses that (A,b) is a sample of LWE. Else, output that it is a uniform sample. If (A,b) is
indeed an instance of LWE it yields zTb = zT (As+ e) = zTe, where |zTe| ≤ ∥z∥ · ∥e∥. As both e
and z are short, their inner product is small as well. If b is uniformly random, so is zTb, and
hence with reasonable probability not short.

Duality between Knapsack and LWE. There is a reduction from (search/decision) Knap-
sack to (search/decision) LWE and vice versa. This equivalence is sometimes also referred to as
syndrome decoding. For more details see [MM11, Sec. 4]. The high level idea is the following:
Sampling a uniformly random matrix A ∈ Zm×n

q for sufficiently large m (i.e. m ≥ n + ω(log n)),
provides with overwhelming probability a non-singular matrix, that is, the rows of A generate Zn

q .

By linear algebra, we can find a matrix G ∈ Z(m−n)×m
q such that GA = 0 ∈ Z(m−n)×n

q and such
that all columns of G generate Zm−n

q . We can further randomize G by left-multiplying it by a
random unimodular matrix (recall: this doesn’t change the underlying lattice). For simplicity,
let’s call the randomized matrix G as well. Let (A,b) be an input to the LWE problem. We can
transform this sample to an input sample (G, t) of the knapsack by computing t = Gb. If b was
uniform, so is t. If b = As + e, it yields t = Ge. In other words, the noise distribution of LWE
becomes the secret distribution of the Knapsack problem. The reduction in the other direction is
similar.

Quantumly SIS to LWE. Another connection between SIS and LWE was given in [Ste+09,
Sec. 4]. More precisely, they use the duality connection between the q-ary lattice Λq(A) and Λ⊥q (A)
to show a quantum reduction from SIS to search LWE. Using the reduction from decision LWE
to SIS and search-to-decision for LWE, we can interpret this as both problems being quantumly
equivalent. It is still an open problem to show the equivalence for purely classical reductions.
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Part III

Structured Lattice Problems
As eluded vaguely before, the few cryptographic constructions we have seen so far are not very
practical. Why is this and what is the problem with using the plain LWE and SIS problems?
We can see that the public key sizes and computations are quadratic in the security parameter λ
(assuming m,n ∼ λ), this is quite big and slow.

Let us for instance look at the hash function fA from Section 4.3. Simply reading the public
key A ∈ Zn×m

q takes time nm log q > n2 (as m > n for fA to be compressing). However, we can

find pre-images or collisions in time 2O(m) by testing all possible values of {0, 1}m. Our hope is to
reduce the size of the public key to something roughly m ≈ n. The idea:

In this course, we focus on the so-called module variants of SIS and LWE. Those are the ones
that are most used in practice as they offer a good security-efficiency balance and are better for fine-
tuning concrete parameters. For simplicity, we focus on the so-called power-of-two cyclotomic rings
as most practical schemes are initiated in this setting. This also helps to simplify the mathematical
framework.

7 Mathematical Setting

Let us first fix the mathematical setting we are using in the following.

7.1 Ring of Polynomials

Let Z[x] denote the ring of polynomials with integer coefficients. Further, let n = 2k for k ∈ N
be a power of two. We define the quotient ring R := Z[x]/(xn + 1). Informally, this ring now
contains ”polynomials modulo xn + 1”. This means that xn is identified with −1 and thus every
element in R can be uniquely represented by a polynomial of degree less than n. By identifying a
polynomial f(x) = f0 + f1x + · · · fn−1xn−1 with its coefficient vector τ(f) := (f0, . . . , fn−1)

T we
obtain an isomorphism τ between R and Zn. This is sometimes called the coefficient embedding.

Example 35. Let n = 4 and f ′(x) = −x5 + x4 + x3 − 3x2 + x + 2 be an integer polynomial
in Z[x]. Its unique representation in Z[x]/(x4 + 1) is f(x) = −x(−1) + (−1) + x3 − 3x2 + x+ 2 =
x3 − 3x2 + 2x+ 1. Let g(x) = −2x3 + 5 be another polynomial in Z[x]/(xn + 1). We can see that
the sum f(x) + g(x) = −x3 − 3x2 + 2x+ 6 is again in the quotient ring. Further, we can multiply
both polynomials and reduce them modulo xn + 1 to obtain a well-defined multiplication operation
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n

Rot(a1)

Rot(am̃)

m̃ = m/n blocs

of size n

Rot(a1,1) Rot(a1,d)

Rot(am̂,1) Rot(am̂,d)

m̂× d blocs

of size n̂ = n/d

Figure 11: Main idea of structured variants.

in this same ring. More precisely,

f(x) · g(x) = −2x6 + 6x5 − 4x4 + 3x3 − 15x2 + 10x+ 1

= −2x2(−1) + 6x(−1)− 4(−1) + 3x3 − 15x2 + 10x+ 1

= 3x3 − 13x2 + 4x+ 5.

Interestingly, f(x)g(x) can also be written as a matrix-vector product Rot(f) · τ(g), where the
matrix Rot(f) ∈ Zn×n only depends on f(x) and τ(g) := (g0, . . . , gn−1)

T ∈ Zn is the coefficient
vector of the polynomial g(x) = g0 + g1x+ · · ·+ gn−1x

n−1.
More precisely, for a polynomial f(x) = f0+f1x+ · · · fn−1xn−1, we define the matrix Rot(f)10

as

Rot(f) =


f0 −fn−1 · · · −f1
f1 f0 · · · −f2
...

...
. . .

...
fn−1 fn−2 · · · f0

 ∈ Zn×n.

We can now define vectors over R, where every coefficient of such a vector is given by one
polynomial. Let f = (fj)j∈[d] and g = (gj)j∈[d] both be vectors in Rd with d ∈ N. Then their inner
product ⟨f,g⟩ can be written as

[Rot(f1)| · · · |Rot(fd)] · τ(gj)j∈[d] ∈ Zn.

In the same manner, we can define matrices over R, where every entry of such a matrix is given by
one polynomial. Let F = (fkj)k∈[m],j∈[d] ∈ Rm×d and g = (gj)j∈[d] ∈ Rd. Then their matrix-vector
product F · g can be written as

Rot(f11) · · · Rot(f1d)
Rot(f21) · · · Rot(f2d)

...
...

Rot(fm1) · · · Rot(fmd)

 · τ(gj)j∈[d] ∈ Znm.

Overall, we now see how we can replace a fully random matrix A ∈ Zm×n
q by some structured

matrix using properties of R, see Figure 7.1.

10Because of its special structure this matrix is often called nega-cyclic or anti-cyclic matrix.
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Geometry. The coefficient embedding τ also allows us to define a geometry on R. We can
measure lengths and distances by setting ∥f∥ := ∥τ(f)∥, where the latter is the standard Euclidean
norm over Z. We extend this definition component-wise to vectors in the natural way. Furthermore,
we can sample elements over R by sampling the polynomial’s coefficients independently over Z. In
particular, we have different ways of sampling from a Gaussian distribution over R. Either, we can
sample every coefficient from some discrete Gaussian distribution over Z or directly sample from
a discrete Gaussian distribution over Zn.

Choice of n. The reason why n is taken as a power of two is that in this case xn+1 is irreducible,
guaranteeing that R is an integral domain, which in turn prevents some standard attacks. It also
benefits from a very rich algebraic structure as it is the 2n-th cyclotomic polynomial and hence R
is the ring of integers of a cyclotomic field. Those rings are well understood and have very nice
algebraic properties. For this crash course however, we won’t dig deeper into the mathematical
background :)

7.2 Module Lattices

We now explain how this mathematical setting gives rise to Euclidean lattices with additional
structure.

Ideal lattices. Let us recall some definitions of our algebra courses. An ideal I ⊆ R is an
additive subgroup of a ring R that is closed under multiplication by any ring element. That is, I
is closed under addition (and substraction) and for any y ∈ I and r ∈ R, it yields ry ∈ I. Using
the coefficient embedding τ that we defined above, we can embed the ideal into Zn. The subgroup
property makes sure that the image τ(I) is a lattice in Zn.11 And the additional ideal property
makes this lattice a special lattice, that we call ideal lattice. In particular, if we take a monomial xj

for some j ∈ [n − 1] (which is an element of our ring R = Z[x]/(xn + 1)) and multiply it with
any element of the ideal y ∈ I, we have

∥∥xjy
∥∥ = ∥y∥. The key insight here is that multiplying

by a monomial only shifts the coefficient vector and possibly changes the sign, but doesn’t change
the norm of the coefficient vector. Hence, any element y ∈ I gives rise to n linearly independent
vector y, yx, yx2, . . . , yxn−1. This means, once we found one shortest vector, we actually found n
linearly independent shortest vector. That is, λ1(τ(I)) = · · · = λn(τ(I)) (see Section 1). Recall
that for any lattice, there is a reduction from SIVPγ to SVPγ

√
n. In the ideal lattice setting

for power-of-two cyclotomics, the reduction is improved by a factor of
√
n in the approximation

factor.12

Module lattices. For what follows, we are not interested in ideals over R, but in modules over R.
Informally, modules can be thought of a generalization of the real vector space Rd for some positive
integer d. In Rn, the scalar multiplication is defined by elements over R. Now, we are looking at
subsets M ⊆ Rd, where the scalar multiplication is defined by elements of R.13 Note that ideals
are modules for d = 1. By applying the coefficient embedding τ to every coefficient of vectors
in M, we can define the set τ(M) ⊂ (Zn)d = Znd. As for the ideal case, this defines a lattice
of dimension nd with special properties, as it is closed under scalar multiplication. As before, we
can multiply any element y of M by a monomial xj for some j ∈ [n − 1] and this won’t change
the norm of y. However, xjy only gives us n linearly independent vectors, not n · d. So, an oracle
for Mod-SVP isn’t enough to solve Mod-SIVP.

Canonical embedding. Throughout this crash course we use the coefficient embedding, because
it is much more intuitive and requires less mathematical background knowledge. However, in many
of the quoted work, another embedding is used which may be seen as more appropriate from an

11Most of the time, I is used to design the ideal and the corresponding ideal lattice at the same time.
12With respect to the so-called canonical embedding, this is true for all cyclotomics.
13Here, we simplify things a bit and talk about modules as subsets of Rd, but actually they are subsets of Kd,

where K is the corresponding cyclotomic field to R.
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algebraic point of view. It is called canonical embedding and has the nice property that not only
addition, but also multiplication of two ring elements is component-wise with respect to it. That
means that the corresponding ”rotation” matrix becomes a diagonal matrix. For more details we
refer to the discussion by Lyubashevsky et al. [LPR13] in Section 1.2.

Hardness of ideal lattice problems. An important question that arises when considering
structured lattices, is how hard are standard problems, such as searching for a shortest vector,
applied to this class of lattices? Informally, we don’t know (yet?) of any algorithm exploiting the
module structure, but we do know algorithms that exploit the ideal structure. In the following we
focus on the hardness of Id-SVP (i.e., SVP restricted to ideal lattices).

On the one hand, some works have proven worst-case to average-case reductions for problems
in ideal lattices [Gen09; Boe+20]. They proved that there exist distributions over the set of ideal
lattices such that an ideal chosen from this distribution is “as hard as possible”. More formally,
if one can solve Id-SVP for such random lattices with non-negligible probability, then one can
solve Id-SVP in any ideal lattice.

On the other hand, several works have shown weaknesses of Id-SVP for specific choices of ideals
or parameters. Cramer et al. [Cra+16] showed that Id-SVP can be solved in quantum polynomial
time for principal ideals (i.e., ideals generated by a single ring element) of cyclotomic fields, when
the generator is sampled from a Gaussian distribution. It is also known that the relaxed variant

of Id-SVP with a large approximation factor ≈ 2
√
d can be solved in quantum polynomial time in

cyclotomic fields of degree d [CDW21]. In 2021, Pan et al. [Pan+21] showed that, for some prime
ideals with a lot of symmetries (in Galois number fields), the Id-SVP problem could be solved
classically in polynomial time. Finally, there is also a line of work targeting Id-SVP for all ideals
of all number fields [PHS19; BR20; Ber+21]. However, those algorithms require some exponential-
time pre-processing, and are at the moment no better than lattice reduction algorithms that work
on unstructured lattices (such as BKZ).

8 Module Variants

A nice talk that summarizes all module lattice problems that are relevant for lattice based cryp-
tography - and that we are going to define just below - was given by Damien Stehlé as an invited
talk at PQCrypto 2021, still available online [here].

8.1 Module Short Integer Solution

Throughout the section, we assume that computations are done over the ring R = Z[x]/(xn + 1).
For an integer q we set Rq = R/(qR) = Zq[x]/(x

n + 1). We now define the Module Short Integer
Solution problem, abbreviated M-SIS, which was first introduced by Langlois and Stehlé [LS15].

Definition 36 (Module-SIS). Let m, d and q be positive integers and β be a positive real. Given m
independent vectors aj sampled uniformly at random over Rd

q , forming the columns of a matrix A ∈
Rd×m

q , the problem M-SISd,q,β,m asks to find a nonzero vector z ∈ Rm of norm 0 < ∥z∥ ≤ β such
that

Az =

m∑
i=1

ziai = 0 mod q.

Actually, M-SIS generalizes plain SIS, simply take n = 1 and thus R = Z. Another special
case of M-SIS is given for d = 1, which is called R-SIS. In this case the matrix A is composed
of one single row and thus we are considering the inner-product of this single row with z. Note
that, historically, R-SIS was introduced before M-LWE in two concurrent works by Peikert and
Rosen [PR06] and Lyubashevsky and Micciancio [LM06]. One can define an inhomogeneous version
and Hermite normal form as for SIS.
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Gain in Efficiency. When embedding A via the coefficient embedding τ in Z, we realize
that τ(A) ∈ Znd×nm

q . Wheres in the plain setting, we had to store (nd)(nm) log q bits, we now
only have to store (nd)m log q bits (as one row of τ(A) defines n− 1 other rows). Hence, we gain a
factor of n. Regarding computation, we can make use of FFT-like techniques to compute ziaij in
quasi-linear time O(n log n). Hence, computing Az can be done in O(dmn log n), where we again
save a factor n.

Hidden Structured Lattice. We can interpret M-SIS as a problem over random q-ary module
lattices. More precisely, M-SIS defines an instance of Mod-SVPγ in the random module lattice

Λ⊥q (A) = {y ∈ Rm : Ay = 0 mod q},

where the approximation factor γ depends on the norm β.

Hardness. Similar to its unstructured counterpart, M-SIS also enjoys worst-case to average-case
connections for suitable parameter choices from lattice problems such as SIVPγ . Whereas the
hardness results for SIS start from lattice problems in the class of general Euclidean lattices, the
set has to be restricted to module lattices in the case of M-SIS. Recall, these module lattices
correspond to modules in the ring R and we refer to the related lattice problem as Mod-SIVPγ .
The hardness theorem for M-SIS strongly resembles Theorem 21 on the hardness of plain SIS,
where one replaces n simply by nd and one restricts the corresponding lattice problem to module
lattices.

Theorem 37. For any m = poly(n) and d ∈ N, any β > 0 and any q ≥ β · poly(nd), solv-
ing M-SISd,q,β,m with non-negligible probability is at least as hard as solving the problem Mod-SIVPγ

on arbitrary nd-dimensional module lattices with overwhelming probability, for some γ = β ·
poly(nd).

For instance, [LS15, Thm. 3.6] requires q ≥ β ·
√
nd · ω(log nd) and γ ≥ β ·

√
nd · ω(

√
log(nd)).

8.2 Module Learning With Errors

The module variant of LWE was first defined by Brakerski et al. [BGV12] and thoroughly studied
by Langlois and Stehlé [LS15]. All following three definitions can be obtained by replacing Z by R
and n by d in the corresponding definitions of LWE.

Definition 38 (Module-LWE distribution). Let d and q be positive integers and let χ be a distri-
bution over R. For a fixed secret s ∈ Rd

q , the M-LWE distribution As,χ over Rd
q × Rq is obtained

by choosing a← U(Rd
q), e← χ and outputting (a, b = ⟨s,a⟩+ e mod q).

Again, there is a search and a decision variant.

Definition 39 (Search Module-LWE). Let m be a positive integer. Given m independent sam-
ples (ai, bi) ∈ Rd

q×Rq from As,χ for a uniformly random s ∈ Rd
q . The problem search-M-LWEd,q,χ,m

asks to find s.

We usually write A ∈ Rm×d
q as the matrix whose rows are given by the M-LWE samples ai.

Definition 40 (Decision Module-LWE). Let m be a positive integer. Given m independent sam-
ples (ai, bi) ∈ Zd

q × Rq that are either drawn from As,χ for a uniformly random s ∈ Rd
q or drawn

from the uniform distribution U(Rd
q×Rq). The problem dec-M-LWEd,q,χ,m asks to distinguish both

cases with non-negligible advantage.

Again, we can define variants of this problem, where we modify the secret and/or the noise
distribution. Further, we can define the Hermite Normal Form and the Learning With Rounding
variant.

27



Lattice-Based Cryptography (May 30, 2025) Katharina Boudgoust

Hidden Structured Lattice. As for M-SIS, we can interpret M-LWE as a problem over ran-
dom q-ary module lattices. More precisely, M-LWE defines an instance of BDD (restricted to
module lattices) in the random lattice

Λq(A) = {y ∈ Rm : y = As mod q for some s ∈ Rd},

where b is the target point which distance from the lattice is given by the noise e← χm.

Hardness. Similarly to M-SIS, the module version of LWE benefits from worst-case to average-
case reductions from problems over module lattices. The hardness theorem for M-LWE strongly
resembles Theorem 34 on the hardness of plain LWE, where the lattice problem is now on nd-
dimensional module lattice. It was proven by Langlois and Stehlé [LS15, Thm. 4.7].

Theorem 41. For any m = poly(n), any modulus q ≤ 2poly(n) and any discrete Gaussian error dis-
tribution χ of size αq ≥ 2

√
d·ω(
√
log n) (where 0 < α < 1), solving (search/decision) M-LWEd,q,χ,m

with non-negligible probability is at least as hard as solving quantumly the problem Mod-GapSVPγ

and the problem Mod-SIVPγ on arbitrary nd-dimensional module lattices with overwhelming prob-

ability, for some γ = Õ(n
√
d/α).

Later works have dequantized this reduction, but, similarly to the plain setting, only work
for Mod-GapSVPγ [Bou+20] and large enough rank d. Again, we can show that M-LWE doesn’t
become significantly easier to solve if we set the noise and/or the secret distribution to be the
uniform distribution of polynomials with coefficients in {−β, . . . , β}n [BoudgoustJRW22b]. Fur-
ther, the entropic hardness has been shown for M-LWE via two incomparable techniques by Lin et
al. [LWW20] and Boudgoust et al. [BoudgoustJRW22]. As an additional feature, a converse re-
duction from M-LWE to Mod-SIVPγ is proven for the special case of power-of-2 cyclotomics [LS15]
and improved by Wang and Wang [WW19] for all cyclotomic fields.

Other ring structures. We remark that it is possible to define M-LWE with respect to rings
of the form Z[x]/f(x), for an irreducible polynomial f(x) other than xn + 1. However, not for all
choices of f(x) this is a good idea. More information can be found in Peikert’s paper on how not
to instantiate R-LWE/M-LWE [Pei16b].

8.3 Special Role of Ring-LWE and Ring-SIS

In Part II we have introduced the plan SIS and LWE problems together with the hardness reduction
from worst-case SIVP to the average-case SIS or LWE. We can observe that we actually have an
equivalence. If we have an oracle at hand that solves SIVPγ on an arbitrary lattice Λ, then we
can solve SIS for the bound β = γ · λn(Λ). For LWE, we note that it defines an instance of BDD
for some special lattice and there is a reduction from BDD to SIVP (via a problem that is called
unique-SVP and via GapSVP). Hence, if we can solve SIVP on arbitrary lattices, we can also
solve LWE (for some parameters).

How does the situation looks for structured variants for LWE and SIS? Interestingly, there
seems to be a difference between modules of rank exactly one (i.e., ideals) and modules of rank at
least 2. First, note that the rank of the module lattice defined by M-SIS (i.e., Λ⊥q (A)) and M-LWE
(i.e., Λq(A)) depends onm. Further, if we take d = 1 (the ring case), then we have to choosem > 1.
If we would take m = 1, then R-SIS wouldn’t possess a solution and decision R-LWE would become
vacuously hard (for a ∈ R×q ).

The worst-case to average-case reductions we have seen before applied for rank 1 modules says
that there is a reduction from Id-SIVP to R-SIS (Theorem 37) and to R-LWE (Theorem 41). Using
the observation done just above, we obtain a reduction from R-LWE (or R-SIS) to Mod-SIVP, not
to Id-SIVP. So Id-SIVP and R-LWE are not equivalent. In particular, all algorithms that improve
the best known attacks against SIVP over ideal lattices, don’t change the state of the art of attacks
against R-LWE (and even less for M-LWE).
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8.4 Subtleties over Number Fields

Even though, it seems simple to obtain M-SIS and M-LWE simply by replacing the integers Z by
the ring of integers R of a number field K, it isn’t so straightforward for everything.

One very instructive example is the Leftover Hash Lemma that we have proven in Section 4.3.
To prove Lemma 22, we required q to be prime so that Zq becomes a field, where every non-zero
element is a unit. However, for q prime Rq may not be a field, and in particular, not every non-zero
element is a unit.

There have been several solutions to this problem. One solution, as detailed out by Lin et
al. [LWW20], is to restrict ourselves to number fields and modulus such that Rq is indeed a field.
This is a very strong restriction, as there are number fields where no such q exists. For example,
in the case of the m-th cyclotomic number field, we need to require (at least) that (Z/mZ)× is
cyclic. For power-of-two cyclotomics, this is not the case.

Another solution is to not use the way via universal families of hash functions, but to prove the
LHL ”by hand”. This has first been done by Micciancio [Mic07] for the case of R = Z[x]/(xn − 1)
and later generalized by different works. The most general version can be found in my the-
sis [Bou21].

An orthogonal way is to make use of discrete Gaussians of width above the smoothing parameter
of R (seen as a lattice). This has been shown for all number fields by Roşca et al. [RSW18].

8.5 Interlude: Fiat-Shamir with Aborts Signatures

In the following we describe a blueprint to construct a signature scheme whose hardness is based
on module lattice problems. It follows the so-called Fiat-Shamir with Aborts paradigm, first
introduced by Lyubashevsky [Lyu12]. It can be seen as a lattice analogue of the Schnorr signature,
but with some important caveats. The following scheme is essentially the signature scheme from
Güneysu et al. [GLP12] (adapted from the ring to the module setting). This design paradigm builds
also the starting point of Dilithium [Duc+18], a finalist in the ongoing standardization process run
by NIST.14 The second strategy (not covered in the course) to construct lattice-based signatures
is to follow the so-called GPV-approach [GPV08]. It can be seen as a hash-then-sign analogue,
but again, some important caveats need to be taken into account.

Setting. Let Rq = Zq[x]/⟨xn +1⟩, with n a power of two and q a prime such that q = 1 mod 2n.
For k, ℓ ∈ N, let A ∈ Rk×ℓ

q follow the uniform distribution and be a public shared parameter of the
system. The number of columns ℓ and the number of rows k should be adapted to the required
security level, but usually they are small constants. Let Hc : {0, 1}∗ → C = {c ∈ R : ∥c∥1 =
d, ∥c∥∞ = 1} be a random oracle with d such that |C| > 22λ, where λ denotes the required
security level. Let s, β ∈ Z and the message space M = {0, 1}∗. We rely on the key set Sβ =
{a ∈ R : ∥a∥∞ ≤ β} with β ∈ N. Finally, let D denote a distribution over Rℓ+k providing
(with overwhelming probability) vectors of norm at most B and to which we associate a rejection
probability Prrej .

The signature scheme Π = (KGen,Sig,Vf) from [GLP12] is illustrated in Figure 12.

Description. The algorithm KGen samples a secret key vector s, composed of elements of R
with coefficients of size at most β, and sets the verification key to t = [A|Ik] · s ∈ Rk

q . At the
beginning of the signing procedure, a masking vector y following the distribution D is sampled.
The signing party then computes u = [A|Ik] · y ∈ Rk

q , which serves together with the message m
as input to the random oracle Hc. The output c of Hc is a polynomial in R with exactly d
coefficients that are ±1 and the remaining coefficients are 0. The second part of a potential
signature is defined as z = s · c+y. In order to make the distribution of the signature independent
of the secret key, the algorithm only outputs the potential signature with probability Prrej . This
step is called rejection sampling. In order to verify σ, the verifier first re-constructs the hash
value c = Hc(u,m) and then checks if the norm of z is smaller than B and that [A|Ik] ·z = t ·c+u.

14https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
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KGen(1λ) : sample s← U(Sℓ+k
β )

set sk = s and vk = t = [A|Ik] · s ∈ Rk
q

return (sk, vk)
Sig(sk,m) : set z = ⊥

while z = ⊥ do:
sample y← D
set u = [A|Ik] · y ∈ Rk

q

compute c = Hc(u,m) ∈ C
set z = s · c+ y
with probability 1− Prrej

set z = ⊥
return σ = (u, z)

Vf(vk, σ,m) : re-construct c = Hc(u,m)
if ∥z∥2 < B and [A|Ik] · z = t · c+ u,
then return 1

else return 0

Figure 12: The signature scheme from [GLP12] with minor modifications.

The parameters β, d,B and Prrej have to be set strategically such that the scheme is correct,
efficient and secure, see [Lyu12; Duc+18].

Distribution D. For simplicity, we leave the concrete definition of the distribution D open. In
the literature, mainly two instantiations have been studied: the discrete Gaussian distribution
over R and the uniform distribution over the set of elements of small norms [Lyu09; Lyu12].
The literature provides concrete formulas for the rejection probability Prrej and the bound B.
For example, for D = Dk+ℓ

s the discrete Gaussian distribution of width s, the bound B comes
from the Gaussian tail bound (Lemma 28) and the rejection probability can be computed as
min(1, Dℓ+k

s (z)/M ·Dℓ+k
c·s,s(z)), where M is a constant that depends on β (the Euclidean norm of

the secret s) and d (the ℓ1-norm of the challenge c).

Lattice Peculiarities. We have already seen one caveat in the lattice setting. As s, c and y
are all elements of short norm, z would leak information on s if we wouldn’t apply the rejection
sampling. In order to save in the size of the signature, we can send c instead of u in the signature.
By verifying if c = Hc([A|Ik] · z − t · c,m), and that the norm of z is small enough, we can
equivalently verify the signature. This does not only reduce the dimension of the vector from k
to 1, but also the total bit-length from nk log2 q to n log2 3, as u can be any vector in Rk

q but c is
a polynomial with ternary coefficients.

Security. We now discuss the high level idea how to prove the security of Π = (KGen,Sig,Vf) as
specified in Figure 12. It follows the original work of Lyubashevsky and proves the security based
on the hardness of M-LWE and M-SIS in two steps.

Step 1: Modify the signing algorithm so that it doesn’t depend on the secret key anymore. As,
after the rejecting sampling, the distribution of the response z is independent of the secret key s,
we can change the order of computing the response z and the commitment u. More precisely,
the signing procedure now first samples z ← D and the challenge c ← U(C) and only then
computes u = [A|Ik]z− tc and programs Hc(u,m) = c. One can show that with only very small
probability the random oracle has been queried on (u,m) before.

Step 2: Modify the key generation algorithm. The key generation algorithm is modified so that the
secret key s comes from the set Sℓ+k

β′ with larger coefficients (β′ > β). The bound β′ is chosen in
such a way that with high probability multiple solutions for a given t exist. Assuming the hardness
of M-LWE both games are computationally close.
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Now, once the adversary outputs a forgery, the General Forking Lemma [BN06] is applied to
obtain two signatures (z1, c1) and (z2, c2) for the same message and the same commitment u. As
both signatures are valid, it yields [A|Ik] (z1 − c1s− z2 + c2s) = 0. This solves M-SIS.

9 NTRU

9.1 NTRU Problem

The NTRU problem was introduced in the 90’s by Hoffstein et al. [HPS98] and is the underlying
hardness assumption of the now well-known NTRU encryption/signature scheme. The acronym
stands for Number Theory Research Unit. On the positive side, it gives rise to quite efficient
schemes that have withstood roughly 30 years of cryptanalysis (when correctly parametrized).
Furthermore, it can be rephrased as a problem over random q-ary module lattices, making it a
presumably quantum-resistant hardness source. However, on the negative site, it doesn’t benefit
(yet?) from worst-case to average-case reductions (in contrast to M-SIS and M-LWE from before).
More on that later. Let us first introduce the problem.

Originally, the problem was defined over the ring Z[x]/(xn − 1) for any prime n. For the sake
of simplicity (and coherence) let us stick to the ring R = Z[x]/(xn +1), where n is a power-of-two.
We denote by R×q the elements of Rq that are invertible, i.e., for f ∈ R×q it exists a f−1q such
that f · f−1q = 1 mod (xn + 1, q).

Definition 42 (NTRU distribution). Let q be a positive integer and χ be a distribution over Rq.
For a fixed f ∈ R×q , the NTRU distribution Nf,χ over Rq is obtained by sampling g ← χ, and
outputting h = g/f ∈ Rq.

Note that, both f and g will be chosen to have very small coefficients, but the inverse of f in
general won’t have small coefficients anymore and hence h neither. It has a search and decision
variant, similarly to LWE.

Definition 43 (Search NTRU). Let β be a positive real. Given a sample h ∈ Rq from Nf,χ,
find (z1, z2) ∈ R2 such that z1 + h · z2 = 0 mod q and 0 < ∥(z1, z2)∥ ≤ β.

Here, we denote by ∥(z1, z2)∥ the norm of the vector obtained by concatenating the coefficient
vector of z1 and of z2. Informally, one can interpret NTRU as some kind of homogeneous version
of R-LWE in HNF, where the term z1 + h · z2 needs to be 0 modulo q.

The decision variant has also been called ‘Decision Small Polynomial Ratio’ (DSPR) prob-
lem [LTV12], and ‘NTRU Decisional Key Cracking’ problem [Ste14].

Definition 44 (Decision NTRU). Given a sample h ∈ Rq, the problem decision-NTRUq,χ asks
to distinguish between the real case where h ← Nf,χ for some randomly chosen f in R×q , and the
random case where h← U(Rq).

Module variant. It is also possible to formulate a module variant of NTRU in the natural
way, as for instance studied by Chuengsatiansup et al. [Chu+20]. Instead of sampling single ring
elements g, f , one can sample matrices G,F (where F is required to be invertible over Rq and set
the output of the module NTRU distribution as H = G · F−1q .

Hidden Structured Lattice. As for M-SIS and M-LWE, we can interpret NTRU as problem
over random q-ary module lattices. More precisely, search NTRU defines an instance of SVP
(restricted to module lattices of rank 2) in the random lattice

Λ⊥q (h) = {(z1, z2) ∈ R2 : h · z1 + z2 = 0 mod q}.

We won’t go into details here, but it is actually a promise variant of the shortest vector problem,
as we have a guarantee that the norm of a shortest vector is much smaller than what we would
expect from a random lattice. This promise variant is called unique SVP.
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Multiple samples. One can also generalize the definitions above to multiple sample of the
NTRU distribution. In this case, the input to (search/decision) NTRU is of the form h1, . . . , ht

for t samples. The hidden lattice becomes

Λ⊥q (h1, . . . , ht) = {(z0, z1, · · · , zt) ∈ Rt+1 : hj · z0 + zj = 0 mod q∀j ∈ [t]}.

According to the current state-of-the-art, handing out multiple samples for the same private f
is not insecure, as long as the parameters are instantiated appropriately. There is some small loss
in concrete security, as the promise gap in the unique SVP becomes slightly larger.

Hardness. When f and g are sampled from a (discrete) Gaussian distribution with standard
deviation larger15 than

√
q, decision NTRU becomes vacuously hard, as the NTRU distribution

gets statistically close to uniform [SS11, Theorem 3.2].
For overstretched parameter choices, where the modulus q is subexponentially large in the ring

degree, the NTRU problems have been shown to be solvable in polynomial time, e.g. [DW21a];
however, for cryptographic applications we are interested in much smaller values of q similar to
that used in the original NTRU cryptosystem [HPS98], for which no efficient attacks are known
against either search or decision NTRU problems.

Recently, a variant of the search variant of NTRU has been reduced from SVP over ideal
lattices [PS21]. But there is neither a search to decision reduction nor a direct worst-case to
average-case reduction to decision NTRU.

NTRU to Ring-LWE. As pointed out by Peikert [Pei16a], there is a rather simple reduction
from decision NTRU to search R-LWE. Given independent samples hi ∈ Rq, the reduction samples
a fixed secret s and independent noise elements ei for R-LWE from the corresponding distribution.
It then inputs (hi, bi) to the R-LWE oracle, where bi = hi · s + ei. The reduction then outputs
’NTRU’ if the R-LWE oracle’s output equals s. Else, it outputs ’Uniform’. If hi was sampled
from the uniform distribution, so was (hi, bi) a correctly distributed R-LWE instance and hence
the oracle’s output was correct. If, however, hi = gi/f , it yields bi = (gi · s)/f + ei, where the
information of s is theoretically hidden if the error distribution of R-LWE is sufficiently wider than
the secret distribution of NTRU.

Considering this reduction an the reduction from SVP over ideal lattices to search NTRU, it
seems that the hardness of NTRU lies between ideal and module SVP (for rank at least 2). It is
an open problem and interesting research direction to better understand its precise position with
respect to those structured lattice problems.

9.2 Interlude: NTRU Encrypt

We now have a look at the textbook NTRU Encrypt scheme, as originally introduced by Hoffstein
et al. [HPS98]. The same blueprint is still used in recent and highly efficient schemes, such as the
finalist NTRU and alternate finalist NTRU Prime of NIST’s standardization process.

Let n, p, q be positive integers such that p, q are prime and co-prime with each other. Further,
let Lf , Lg, Lϕ, Lm ⊆ Z[x]/(xn + 1) = R. Most commonly, those sets are given by ternary poly-
nomials (i.e., coefficients in {−1, 0, 1}) of fixed Hamming weight. Additionally, we require Lf to
only contain polynomials that are invertible modulo q and modulo p. In other words, there exist
polynomials Fq and Fp such that f · Fq = 1 ∈ Rq and f · Fp = 1 ∈ Rp.

KGen: Sample f ← U(Lf ) and g ← U(Lg). Return sk = (f, Fp) and pk = h = Fq · g ∈ Rq.

Enc: For m ∈ Lm, sample ϕ← U(Lϕ) and return the ciphertext c, where c = pϕh+m ∈ Rq.

Dec: Compute m′ = Fp · (f · c mod q) mod p.

15How much larger depends, among other things, on the splitting behavior of the defining polynomial modulo q.
Less splitting allows for smaller q.
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Correctness. It yields

f · c mod q = f(pϕh+m) mod q

= fpϕFqg + fm mod q

= pϕg + fm mod q,

where all ring elements have very small coefficients and thus there is no ”wrap-around” modulo
q and the equation is also true over the integers. Now, it follows

Fp(f · c mod q) mod p = Fp(pϕg + fm) mod p

= Fpfm mod p = m.

Security. There is no security reduction for NTRU Encrypt. However, we can analyze its security
with respect to known attacks. For example, to recover the secret key, one has to solve search
NTRU, which is itself an instance of SVP of a rank-2 module lattice.
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[RSW18] Miruna Rosca, Damien Stehlé, and AlexandreWallet. “On the Ring-LWE and Polynomial-
LWE Problems”. In: EUROCRYPT (1). Vol. 10820. Lecture Notes in Computer Sci-
ence. Springer, 2018, pp. 146–173.

36



Lattice-Based Cryptography (May 30, 2025) Katharina Boudgoust

[Sch87] Claus-Peter Schnorr. “A Hierarchy of Polynomial Time Lattice Basis Reduction Algo-
rithms”. In: Theor. Comput. Sci. 53 (1987), pp. 201–224.

[SD16] Noah Stephens-Davidowitz. Dimension-preserving reductions between lattice problems.
http://noahsd.com/latticeproblems.pdf, last accessed on 08.07.2021. 2016.

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Improved practical
algorithms and solving subset sum problems”. In: Math. Program. 66 (1994), pp. 181–
199.

[SS11] Damien Stehlé and Ron Steinfeld. “Making NTRU as Secure as Worst-Case Problems
over Ideal Lattices”. In: EUROCRYPT. Vol. 6632. Lecture Notes in Computer Science.
Springer, 2011, pp. 27–47.
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