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Preview

We define a Learning with Errors (LWE) variant which

• is at least as hard as exponentially many P-LWE instances,

• is deterministic and

• can be used to build efficient public key encryption.
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Lattice-Based Cryptography

Definition (Informal)

Cryptographic constructions whose security are based on the
hardness of lattice problems

Advantages

and Motivation

• post-quantum

?

• efficient constructions

often only asymptotically

• advanced cryptographic constructions

• worst-case to average-case security reductions

not for all variants used in practice
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Euclidean Lattices

An Euclidean Lattice Λ of dimension n is the set of linear
combinations with integer coefficients of n independent basis
vectors B = (b⃗1, . . . , b⃗n) in the real vector space Rn,

Λ(B) = {
n

∑
i=1

ai ⋅ b⃗i ∣ ai ∈ Z} .

̂⃗
b1

̂⃗
b2

b⃗1 b⃗2

0
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Hard lattice problems SVP and SVPγ

Let Λ(B) be a lattice of dimension n with basis B.
Its minimum is defined as λ1(Λ(B)) = minv⃗∈Λ(B)∖{0⃗} ∥v⃗∥.1

Problem (Shortest Vector Problem)

Given a basis B, find v⃗ ∈ Λ(B) non-zero such that ∥v⃗∥ = λ1(Λ(B)).

Problem (Approximate Shortest Vector Problem)

Given a basis B and an approximation factor γ, find v⃗ ∈ Λ(B)

non-zero such that ∥v⃗∥ ≤ γ ⋅ λ1(Λ(B)).

The complexity of SVPγ increases with n, but decreases with γ.

It is believed to be exponential in n for any polynomial γ.

1Fix any norm, e.g. Euclidean norm ∥ ⋅ ∥2
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What to do with it?

Images: wikipedia.fr

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem



Intro

Intermediate Problem

Lattice Problem

Constr. 1 Constr. 2 Constr. 3
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Intermediate Problem: Learning With Errors (LWE)

Given A ∈ Zm×n
q and b ∈ Zm

q .

Search: Find s ∈ Zn
q and a small noise e (e.g. Gaussian) s.t.:

A

s

+ e = b

Decision: Distinguish from uniform distribution

Problem: Need to store m(n + 1) log q bits for A and b .
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Intro

LWE

ApproxSVP

PKE IBE FHE

[Reg05]

Advantage: security based on all Euclidean lattices
Disadvantages: (1) large public keys

(2) Gaussian sampling

PKE=Public Key Encryption, IBE=Identity-Based Encryption,
FHE=Fully Homomorphic Encryption
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Structured LWE: Polynomial Learning With Errors

Idea: Give A a structure, need to store less.
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Structured LWE: Polynomial Learning With Errors

Algebraic setting: Replace Zn
q by Rq = Zq[x]/⟨f (x)⟩, for example

f (x) = xn + 1

Given a = ∑
n−1
i=0 aix

i
∈ Rq and b ∈ Rq.

Search: Find s ∈ Rq and small noise e such that:

Rotf (a)

a0
a1

⋮

an−1

−an−1 ⋯ −a1

a0

⋮

⋯

⋱ s + e = b

This corresponds to a ⋅ s + e = b in Rq.
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Two ideas: structured and deterministic variants

P-LWEf

ApproxSVPf

P-LWRf

[SSTX09],[LPR10]2

[BPR12]2

Disadvantages: (1) security based on restricted class of lattices,
depending on f

(2) decisional P-LWR: super-polynomial modulus

2For simplicity, take the power-of-two cyclotomic case, where P-LWE and
R-LWE (resp. P-LWR and R-LWR) coincide.
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Previous work:

P-LWEf

MP-LWE

[RSSS17]

Comp-P-LWRf

[CZZ18] 3

Comp-MP-LWR

Our work

Solution: (1) Middle-Product LWE
reduction for exponentially many f

(2) Computational P-LWRf

allows provable secure PKE

3We simplified the graph, their reduction was shown for the ring variants.
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Contributions

We define:

(1) Computational Middle-Product Learning with Rounding
Problem (Comp-MP-LWR)

We show:

(2) Efficient reduction from MP-LWE to Comp-MP-LWR

We construct:

(3) Public Key Encryption based on Comp-MP-LWR
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Computational Middle-Product
Learning with Rounding
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Middle-Product

Given polynomials a =
n−1

∑
i=0

aix
i
∈ Z<n

[x], b =
2n−2

∑
i=0

bix
i
∈ Z<2n−1

[x].

Their product is

a ⋅ b = c0 + ⋅ ⋅ ⋅ + cn−2x
n−2

+ cn−1x
n−1

+ cnx
n
+ ⋅ ⋅ ⋅ + c2n−2x

2n−2

+ c2n−1x
2n−1

+ ⋅ ⋅ ⋅ + c3n−3x
3n−3

∈ Z<3n−2
[x].

Their middle-product is

a⊙n b = cn−1 + cnx + ⋅ ⋅ ⋅ + c2n−2x
n−1

∈ Z<n
[x].
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Matrix representation of the middle-product

Given a polynomial b =
2n−2

∑
i=0

bix
i
∈ Z<2n−1

[x].

Its Hankel matrix is

Hankel(b) =

⎛
⎜
⎜
⎜
⎝

b0 b1 . . . bn−1

b1 b2 . . . bn
⋱

bn−1 bn . . . b2n−2

⎞
⎟
⎟
⎟
⎠

∈ Zn×n.

For any a ∈ Z<n
[x] it yields

a⊙n b = Hankel(b) ⋅ a,

where a = (an−1, . . . , a0)
T .

Image: wikipedia.de
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Middle-Product LWE + LWR

Let χ be a distribution on R<n
[x] (e.g., Gaussian)

Definition (MP-LWEq,n,χ distribution for s ∈ Z<2n−1
q [x])

Sample a ← U (Z<n
q [x]) and e ← χ.

Return (a,b = a⊙n s + e) ∈ Z<n
q [x] ×R<n

q [x]

Given p < q and y ∈ Zq. Rounding ⌊y⌉p = ⌊
p
q ⋅ y⌉ mod p.

Definition (MP-LWRp,q,n distribution for s ∈ Z<2n−1
q [x])

Sample a ← U (Z<n
q [x]).

Return (a, ⌊b⌉p = ⌊a⊙n s⌉p) ∈ Z
<n
q [x] ×R<n

p [x]
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Intuition

Challenger Adversary

(Input,Target)

Input

Output

Output=Target?

Exp 1:

Exp 2:

(a, ⌊unif⌉p)

(a, ⌊a⊙n s⌉p)

Assumption (Comp-MP-LWR)

The adversary can’t obtain more information from the MP-LWR
distribution than from the rounded uniform distribution.

Images: flaticon.com
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Reduction

MP-LWEq,n,χ MP-LWE×q,n,χ

Comp-MP-RLWEp,q,n,t,χComp-MP-LWRp,q,n,t

(1)

(2)

(3)
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Reduction

MP-LWEq,n,χ MP-LWE×q,n,χ

Comp-MP-RLWEp,q,n,t,χComp-MP-LWRp,q,n,t

(1)

(2)

(3)

(1) If secret s with full-rank Hankel matrix:
(e.g., for q prime, happens with probability ≥ 1 − 1/q)

a uniform ⇒ a⊙n s = Hankel(s) ⋅ a uniform

(2) Round second component of MP-LWE sample
(3) Using Rényi divergence:

fix number of samples t a priori
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Reduction

MP-LWEq,n,χ MP-LWE×q,n,χ

Comp-MP-RLWEp,q,n,t,χComp-MP-LWRp,q,n,t

(1)

(2)

(3)

The reduction is dimension-preserving and works for
polynomial-sized modulus q.
Elements sampled from χ are bounded by B with probability at
least δ, s.t.

q > 2pBnt and δ ≥ 1 −
1

tn
.
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PKE based on Comp-MP-LWR
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Public Key Encryption from Comp-MP-LWR

High level: Adapt encryption scheme from [CZZ18] to
middle-product setting.
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Public Key Encryption from Comp-MP-LWR

Message µ ∈ {0,1}n/2 and random oracle H ∶{0,1}n/2 → {0,1}n/2

REC(y , ⟨x⟩2) = ⌊x⌉2, if ∣x − y ∣ < q
8 (for more details, see [Pei14])

KeyGen(1λ). Sample s ← U (Z<2n−1
q [x]) s.t. rank(Hankel(s)) = n

and ai ← U (Z<n
q [x]) for 1 ≤ i ≤ t.

pk = (ai ,bi = ⌊ai ⊙n s⌉p)i≤t and sk = s.

Enc(µ,pk). Sample ri ← U ({0,1}<n/2+1
[x]) for 1 ≤ i ≤ t. Set

c1 =∑
i≤t

riai and v =∑
i≤t

ri ⊙n/2 bi .

Further set c2 = ⟨v⟩2 and c3 = H(⌊v⌉2)⊕ µ.

Dec(c1, c2, c3, sk). Compute w = c1 ⊙n/2 s and return
µ′ = c3 ⊕H(REC(w , c2)).
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Enc(µ,pk). Sample ri ← U ({0,1}<n/2+1
[x]) for 1 ≤ i ≤ t. Set

c1 =∑
i≤t

riai and v =∑
i≤t

ri ⊙n/2 bi .

Further set c2 = ⟨v⟩2 and c3 = H(⌊v⌉2)⊕ µ.

Dec(c1, c2, c3, sk). Compute w = c1 ⊙n/2 s and return
µ′ = c3 ⊕H(REC(w , c2)).
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Correctness

KeyGen(1λ). pk = (ai ,bi = ⌊ai ⊙n s⌉p)i≤t and sk = s.

Enc(µ,pk). Sample ri ← U ({0,1}<n/2+1
[x]) for 1 ≤ i ≤ t. Set

c1 =∑
i≤t

riai and v =∑
i≤t

ri ⊙n/2 bi .

Further set c2 = ⟨v⟩2 and c3 = H( ⌊v⌉2 )⊕ µ.

Dec(c1, c2, c3, sk). Compute w = c1 ⊙n/2 s and return

µ′ = c3 ⊕H( REC(w , c2) ).

For correctness, reconciliation mechanism has to work:

REC(w , ⟨v⟩2) = ⌊v⌉2 if ∣w − v ∣ <
q

8
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IND-CPA Security

pk = (ai ,bi), sk = s and ciphertext c = (c1, c2, c3), where

c1 =∑ riai , v =∑ ri ⊙n/2 bi , c2 = ⟨v⟩2 and

c3 = H(⌊v⌉2)⊕ µ.

Sequence of steps:

• Distinguishing advantage of IND-CPA game upper bounded
by advantage of computing preimage ⌊v⌉2 of H,

• Replace second component of pk by rounded uniform samples
(use Comp-MP-LWR assumption),

• Replace v by uniform sample, thus c2 is also uniform (use
Generalized LHL),

• As c1 and c2 are independent, adversary can only guess
preimage of H.
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Parameter Choice 1/2

Let λ be the security parameter and c > 0 be a positive constant.

Parameter [RSSS17] Our work

n ≥ λ ≥ λ
t Θ(log n) Θ(log n)

q Θ(n2.5+c√log n) Θ(n4+c log2 n)

log q Θ(log n) Θ(log n)

α Θ ( 1
n
√

log n
) -

p - Θ(n log n)

B - O(n2+c
)

Figure: Comparison of asymptotic parameters

⇒ scheme is correct and secure,

⇒ asymptotically, key and ciphertext size dominated by log q.

⇒ increase of q due to restrictions in hardness proof and
correctness

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem



Parameter Choice 2/2

Let n ≥ λ and let t be the number of samples.

Parameter [RSSS17] Our work

log q Θ(log n) Θ(log n)

Key size

sk (2n − 1) ⋅ log q (2n − 1) ⋅ log q
pk t ⋅ (2n log q) t ⋅ (n log q + n log p)

Ciphertext size

c1 (3/2n) log q (3/2n) log q
c2 n/2 log q n/2
c3 - n/2

Figure: Comparison of key and ciphertext sizes
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Concrete Security

• In practice: derive parameters from the best known attacks
(e.g. BKZ with quantum sieving)

• Primal and dual attack on public key/ciphertext

• Using Toeplitz-matrix representation to define the underlying
lattice (ignore sparse structure)

• Recently, Sakzad, Steinfeld and Zhao improve the
crypto-analysis [SSZ19]
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Big Picture Middle-Product

average-case problem

constructions

implementations

P-LWEf

MP-LWE

PKE RingSigIBE

MP-LWR

PKE

Titanium

our work
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Open Questions

• Reduction from decisional MP-LWE to decisional MP-LWR4,

• Alternatively: search-to-decision reduction for MP-LWR,

• PKE based on MP-LWR in the standard model,

• Using small secret to gain in efficiency.

Thank you

4Carries over to other structured LWR variants.
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