Middle-Product Learning with Rounding Problem and its Applications

Shi Bai¹ Katharina Boudgoust² Dipayan Das³ Adeline Roux-Langlois² Weiqiang Wen² Zhenfei Zhang⁴

 $^{1}\ \mathrm{Department}$ of Mathematical Sciences, Florida Atlantic University.

² Univ Rennes, CNRS, IRISA.

³ Department of Mathematics, National Institute of Technology, Durgapur.

⁴ Algorand.

Dromadaire, 23th January 2020, Rennes, France

We define a Learning with Errors (LWE) variant which

- is at least as hard as exponentially many P-LWE instances,
- is deterministic and
- can be used to build efficient public key encryption.



Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem

Definition (Informal)

Cryptographic constructions whose security are based on the hardness of lattice problems

Advantages

- post-quantum
- efficient constructions
- advanced cryptographic constructions
- worst-case to average-case security reductions

Definition (Informal)

Cryptographic constructions whose security are based on the hardness of lattice problems

Advantages and Motivation

- post-quantum ?
- efficient constructions often only asymptotically
- advanced cryptographic constructions
- worst-case to average-case security reductions

not for all variants used in practice

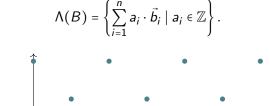
Euclidean Lattices

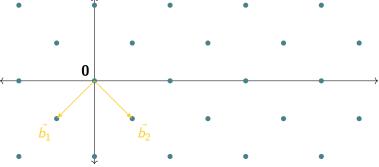
An Euclidean Lattice Λ of dimension *n* is the set of linear combinations with integer coefficients of *n* independent basis vectors $B = (\vec{b_1}, \dots, \vec{b_n})$ in the real vector space \mathbb{R}^n ,

$$\Lambda(B) = \left\{ \sum_{i=1}^n a_i \cdot \vec{b}_i \mid a_i \in \mathbb{Z} \right\}.$$

Euclidean Lattices

An Euclidean Lattice Λ of dimension *n* is the set of linear combinations with integer coefficients of *n* independent basis vectors $B = (\vec{b_1}, \dots, \vec{b_n})$ in the real vector space \mathbb{R}^n ,



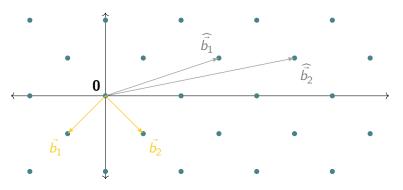


Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Euclidean Lattices

An Euclidean Lattice Λ of dimension *n* is the set of linear combinations with integer coefficients of *n* independent basis vectors $B = (\vec{b_1}, \dots, \vec{b_n})$ in the real vector space \mathbb{R}^n ,

$$\Lambda(B) = \left\{ \sum_{i=1}^n a_i \cdot \vec{b}_i \mid a_i \in \mathbb{Z} \right\}.$$



Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Hard lattice problems SVP and SVP $_{\gamma}$

Let $\Lambda(B)$ be a lattice of dimension *n* with basis *B*. Its minimum is defined as $\lambda_1(\Lambda(B)) = \min_{\vec{v} \in \Lambda(B) \setminus \{\vec{0}\}} \|\vec{v}\|^{1}$.

¹Fix any norm, e.g. Euclidean norm $\|\cdot\|_2$

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Hard lattice problems SVP and SVP $_{\gamma}$

Let $\Lambda(B)$ be a lattice of dimension *n* with basis *B*. Its **minimum** is defined as $\lambda_1(\Lambda(B)) = \min_{\vec{v} \in \Lambda(B) \setminus \{\vec{0}\}} \|\vec{v}\|^{1}$.

Problem (Shortest Vector Problem)

Given a basis *B*, find $\vec{v} \in \Lambda(B)$ non-zero such that $\|\vec{v}\| = \lambda_1(\Lambda(B))$.

¹Fix any norm, e.g. Euclidean norm $\|\cdot\|_2$

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Hard lattice problems SVP and SVP

Let $\Lambda(B)$ be a lattice of dimension *n* with basis *B*. Its minimum is defined as $\lambda_1(\Lambda(B)) = \min_{\vec{v} \in \Lambda(B) \setminus \{\vec{0}\}} \|\vec{v}\|^{1}$

Problem (Shortest Vector Problem)

Given a basis B, find $\vec{v} \in \Lambda(B)$ non-zero such that $\|\vec{v}\| = \lambda_1(\Lambda(B))$.

Problem (Approximate Shortest Vector Problem)

Given a basis B and an approximation factor γ , find $\vec{v} \in \Lambda(B)$ non-zero such that $\|\vec{v}\| \leq \gamma \cdot \lambda_1(\Lambda(B))$.

¹Fix any norm, e.g. Euclidean norm $\|\cdot\|_2$

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Hard lattice problems SVP and SVP $_{\gamma}$

Let $\Lambda(B)$ be a lattice of dimension *n* with basis *B*. Its **minimum** is defined as $\lambda_1(\Lambda(B)) = \min_{\vec{v} \in \Lambda(B) \setminus \{\vec{0}\}} \|\vec{v}\|^{1}$.

Problem (Shortest Vector Problem)

Given a basis B, find $\vec{v} \in \Lambda(B)$ non-zero such that $\|\vec{v}\| = \lambda_1(\Lambda(B))$.

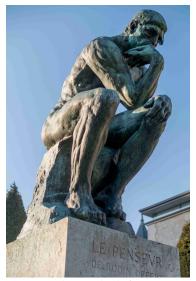
Problem (Approximate Shortest Vector Problem)

Given a basis B and an approximation factor γ , find $\vec{v} \in \Lambda(B)$ non-zero such that $\|\vec{v}\| \leq \gamma \cdot \lambda_1(\Lambda(B))$.

The complexity of SVP_{γ} increases with *n*, but decreases with γ . It is believed to be exponential in *n* for any polynomial γ .

¹Fix any norm, e.g. Euclidean norm $\|\cdot\|_2$

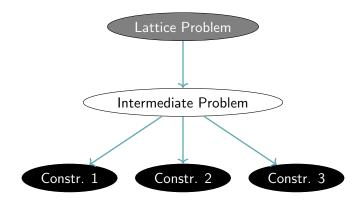
What to do with it?



Images: wikipedia.fr

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

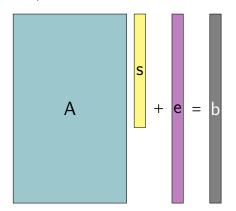
Intro



Intermediate Problem: Learning With Errors (LWE)

Given A $\in \mathbb{Z}_q^{m \times n}$ and b $\in \mathbb{Z}_q^m$.

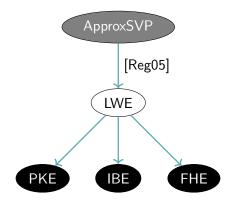
Search: Find $\mathbf{s} \in \mathbb{Z}_q^n$ and a small noise \mathbf{e} (e.g. Gaussian) s.t.:



Decision: Distinguish from uniform distribution Problem: Need to store $m(n+1) \log q$ bits for A and b.

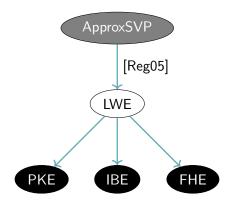
Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Intro



PKE=Public Key Encryption, IBE=Identity-Based Encryption, FHE=Fully Homomorphic Encryption

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem



Advantage: Disadvantages: security based on all Euclidean lattices(1) large public keys(2) Gaussian sampling

Structured LWE: Polynomial Learning With Errors

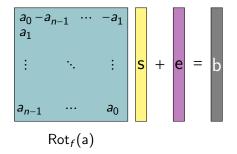
Idea: Give A a **structure**, need to store less.

Structured LWE: Polynomial Learning With Errors

Algebraic setting: Replace \mathbb{Z}_q^n by $R_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$, for example $f(x) = x^n + 1$

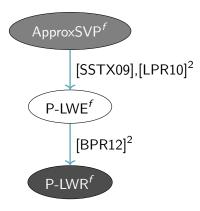
Structured LWE: Polynomial Learning With Errors

Algebraic setting: Replace \mathbb{Z}_q^n by $R_q = \mathbb{Z}_q[x]/\langle f(x) \rangle$, for example $f(x) = x^n + 1$ Given $\mathbf{a} = \sum_{i=0}^{n-1} a_i x^i \in R_q$ and $\mathbf{b} \in R_q$. Search: Find $\mathbf{s} \in R_q$ and small noise \mathbf{e} such that:



This corresponds to
$$a \cdot s + e = b$$
 in R_q .

Two ideas: structured and deterministic variants

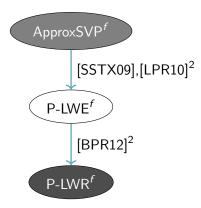


Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

²For simplicity, take the power-of-two cyclotomic case, where P-LWE and R-LWE (resp. P-LWR and R-LWR) coincide.

Middle-Product Learning with Rounding Problem

Two ideas: structured and deterministic variants



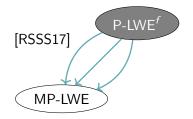
Disadvantages: (1) security based on **restricted** class of lattices, **depending** on *f*

(2) decisional P-LWR: super-polynomial modulus

²For simplicity, take the power-of-two cyclotomic case, where P-LWE and R-LWE (resp. P-LWR and R-LWR) coincide.

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

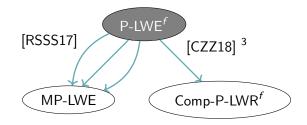
Previous work:



Solution: (1) Middle-Product LWE reduction for **exponentially** many *f*

³We simplified the graph, their reduction was shown for the ring variants. Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem

Previous work:

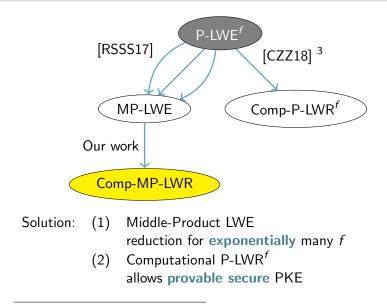


Solution: (1) Middle-Product LWE reduction for exponentially many f

(2) Computational P-LWR^f allows provable secure PKE

³We simplified the graph, their reduction was shown for the ring variants. Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem

Previous work:



³We simplified the graph, their reduction was shown for the ring variants. Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem We define:

(1) Computational Middle-Product Learning with Rounding Problem (Comp-MP-LWR)

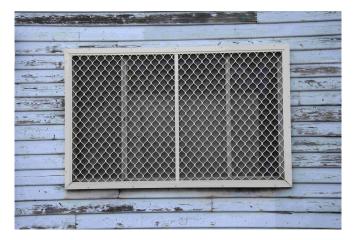
We show:

(2) Efficient reduction from MP-LWE to Comp-MP-LWR

We construct:

(3) Public Key Encryption based on Comp-MP-LWR

Computational Middle-Product Learning with Rounding



Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Middle-Product

Given polynomials
$$a = \sum_{i=0}^{n-1} a_i x^i \in \mathbb{Z}^{$$

Their product is

$$\begin{aligned} \mathbf{a} \cdot \mathbf{b} &= c_0 + \dots + c_{n-2} x^{n-2} \\ &+ \mathbf{c_{n-1}} x^{n-1} + \mathbf{c_n} x^n + \dots + \mathbf{c_{2n-2}} x^{2n-2} \\ &+ c_{2n-1} x^{2n-1} + \dots + c_{3n-3} x^{3n-3} \in \mathbb{Z}^{<3n-2}[x]. \end{aligned}$$

Their middle-product is

$$a \odot_n b = \mathbf{c}_{\mathsf{n}-1} + \mathbf{c}_{\mathsf{n}} x + \dots + \mathbf{c}_{2\mathsf{n}-2} x^{\mathsf{n}-1} \in \mathbb{Z}^{<\mathsf{n}}[x].$$

Matrix representation of the middle-product

Given a polynomial
$$b = \sum_{i=0}^{2n-2} b_i x^i \in \mathbb{Z}^{<2n-1}[x]$$
.
Its Hankel matrix is

$$\mathsf{Hankel}(b) = \begin{pmatrix} b_0 & b_1 & \dots & b_{n-1} \\ b_1 & b_2 & \dots & b_n \\ & \ddots & & \\ b_{n-1} & b_n & \dots & b_{2n-2} \end{pmatrix} \in \mathbb{Z}^{n \times n}.$$

For any $a \in \mathbb{Z}^{< n}[x]$ it yields

 $a \odot_n b = \operatorname{Hankel}(b) \cdot \overline{\mathbf{a}},$

where $\overline{\mathbf{a}} = (a_{n-1}, \ldots, a_0)^T$.

Image: wikipedia.de

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Middle-Product LWE + LWR

Let χ be a distribution on $\mathbb{R}^{< n}[x]$ (e.g., Gaussian)

Definition (MP-LWE_{q,n, χ} distribution for $s \in \mathbb{Z}_q^{<2n-1}[x]$) Sample $a \leftarrow U(\mathbb{Z}_q^{<n}[x])$ and $e \leftarrow \chi$. Return $(a, b = a \odot_n s + e) \in \mathbb{Z}_q^{<n}[x] \times \mathbb{R}_q^{<n}[x]$ Let χ be a distribution on $\mathbb{R}^{\leq n}[x]$ (e.g., Gaussian)

Definition (MP-LWE_{q,n, χ} distribution for $s \in \mathbb{Z}_q^{<2n-1}[x]$) Sample $a \leftarrow U(\mathbb{Z}_q^{<n}[x])$ and $e \leftarrow \chi$. Return $(a, b = a \odot_n s + e) \in \mathbb{Z}_q^{<n}[x] \times \mathbb{R}_q^{<n}[x]$

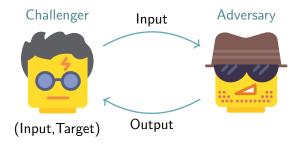
Given p < q and $y \in \mathbb{Z}_q$. Rounding $\lfloor y \rfloor_p = \lfloor \frac{p}{q} \cdot y \rfloor \mod p$.

Definition (MP-LWR_{p,q,n} distribution for $s \in \mathbb{Z}_q^{<2n-1}[x]$) Sample $a \leftarrow U(\mathbb{Z}_q^{<n}[x])$. Return $(a, \lfloor b \rfloor_p = \lfloor a \odot_n s \rfloor_p) \in \mathbb{Z}_q^{<n}[x] \times \mathbb{R}_p^{<n}[x]$

Adversary

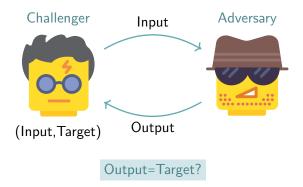
Images: flaticon.com

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang



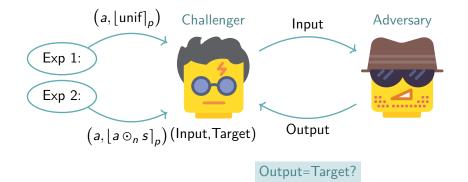
Images: flaticon.com

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang



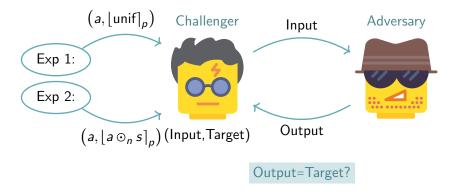
Images: flaticon.com

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang



Images: flaticon.com

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

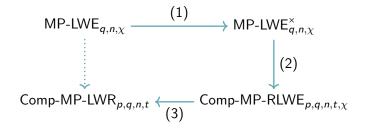


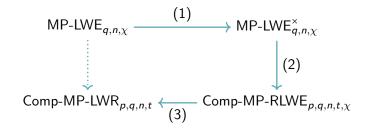
Assumption (Comp-MP-LWR)

The adversary can't obtain more information from the MP-LWR distribution than from the rounded uniform distribution.

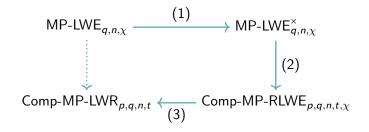
Images: flaticon.com

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

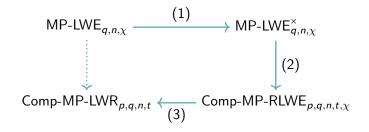




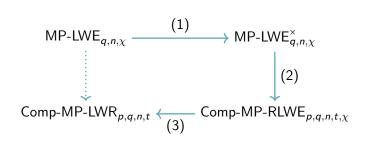
(1) If secret *s* with **full-rank** Hankel matrix: (e.g., for *q* prime, happens with probability $\ge 1 - 1/q$) *a* uniform $\Rightarrow a \odot_n s = \text{Hankel}(s) \cdot \overline{a}$ uniform



- (1) If secret *s* with **full-rank** Hankel matrix: (e.g., for *q* prime, happens with probability $\ge 1 - 1/q$) *a* uniform $\Rightarrow a \odot_n s = \text{Hankel}(s) \cdot \overline{a}$ uniform
- (2) Round second component of MP-LWE sample



- (1) If secret *s* with **full-rank** Hankel matrix: (e.g., for *q* prime, happens with probability $\ge 1 - 1/q$) *a* uniform $\Rightarrow a \odot_n s = \text{Hankel}(s) \cdot \overline{a}$ uniform
- (2) Round second component of MP-LWE sample
- (3) Using Rényi divergence: fix number of samples t a priori



The reduction is **dimension-preserving** and works for **polynomial-sized** modulus *q*.

Elements sampled from χ are bounded by B with probability at least $\delta,$ s.t.

$$q > 2pBnt$$
 and $\delta \ge 1 - \frac{1}{tn}$.

PKE based on Comp-MP-LWR

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem

High level: Adapt encryption scheme from [CZZ18] to middle-product setting.

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \rightarrow \{0,1\}^{n/2}$

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \rightarrow \{0,1\}^{n/2}$ REC $(y, \langle x \rangle_2) = \lfloor x \rfloor_2$, if $|x - y| < \frac{q}{8}$ (for more details, see [Pei14])

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ $\operatorname{REC}(y, \langle x \rangle_2) = \lfloor x \rfloor_2$, if $|x - y| < \frac{q}{8}$ (for more details, see [Pei14]) $\operatorname{KeyGen}(1^{\lambda})$. Sample $s \leftarrow U(\mathbb{Z}_q^{<2n-1}[x])$ s.t. $\operatorname{rank}(\operatorname{Hankel}(s)) = n$ and $a_i \leftarrow U(\mathbb{Z}_q^{<n}[x])$ for $1 \le i \le t$.

$$\mathbf{pk} = (a_i, b_i = \lfloor a_i \odot_n s \rfloor_p)_{i \le t} \text{ and } \mathbf{sk} = s.$$

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ $\operatorname{REC}(y,\langle x \rangle_2) = \lfloor x \rfloor_2$, if $|x - y| < \frac{q}{8}$ (for more details, see [Pei14]) $\operatorname{KeyGen}(1^{\lambda})$. Sample $s \leftarrow U(\mathbb{Z}_q^{<2n-1}[x])$ s.t. $\operatorname{rank}(\operatorname{Hankel}(s)) = n$ and $a_i \leftarrow U(\mathbb{Z}_q^{<n}[x])$ for $1 \le i \le t$.

$$\mathbf{pk} = (a_i, b_i = \lfloor a_i \odot_n s \rfloor_p)_{i \le t} \text{ and } \mathbf{sk} = s.$$

Enc(μ , **pk**). Sample $r_i \leftarrow U(\{0,1\}^{< n/2+1}[x])$ for $1 \le i \le t$. Set

$$c_1 = \sum_{i \leq t} r_i a_i$$
 and $v = \sum_{i \leq t} r_i \odot_{n/2} b_i$.

Further set $c_2 = \langle v \rangle_2$ and $c_3 = H(\lfloor v \rfloor_2) \oplus \mu$.

Message $\mu \in \{0,1\}^{n/2}$ and random oracle $H: \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ $\operatorname{REC}(y,\langle x \rangle_2) = \lfloor x \rfloor_2$, if $|x - y| < \frac{q}{8}$ (for more details, see [Pei14]) $\operatorname{KeyGen}(1^{\lambda})$. Sample $s \leftarrow U(\mathbb{Z}_q^{<2n-1}[x])$ s.t. $\operatorname{rank}(\operatorname{Hankel}(s)) = n$ and $a_i \leftarrow U(\mathbb{Z}_q^{<n}[x])$ for $1 \le i \le t$.

$$\mathbf{pk} = (a_i, b_i = \lfloor a_i \odot_n s \rfloor_p)_{i \le t} \text{ and } \mathbf{sk} = s.$$

Enc(μ , **pk).** Sample $r_i \leftarrow U(\{0,1\}^{< n/2+1}[x])$ for $1 \le i \le t$. Set

$$c_1 = \sum_{i \leq t} r_i a_i$$
 and $v = \sum_{i \leq t} r_i \odot_{n/2} b_i$.

Further set $c_2 = \langle v \rangle_2$ and $c_3 = H(\lfloor v \rfloor_2) \oplus \mu$.

Dec($c_1, c_2, c_3, \mathbf{sk}$). Compute $w = c_1 \odot_{n/2} s$ and return $\mu' = c_3 \oplus H(\operatorname{REC}(w, c_2))$.

KeyGen(1^{$$\lambda$$}). **pk** = $(a_i, b_i = \lfloor a_i \odot_n s \rfloor_p)_{i \le t}$ and **sk** = *s*.
Enc(μ , **pk**). Sample $r_i \leftarrow U(\{0, 1\}^{< n/2+1}[x])$ for $1 \le i \le t$. Set

$$c_1 = \sum_{i \leq t} r_i a_i$$
 and $v = \sum_{i \leq t} r_i \odot_{n/2} b_i$.

Further set $c_2 = \langle v \rangle_2$ and $c_3 = H(\lfloor v \rfloor_2) \oplus \mu$. **Dec** $(c_1, c_2, c_3, \mathbf{sk})$. Compute $w = c_1 \odot_{n/2} s$ and return $\mu' = c_3 \oplus H(\operatorname{REC}(w, c_2))$.

For correctness, reconciliation mechanism has to work:

$$\mathsf{REC}(w, \langle v \rangle_2) = \lfloor v \rfloor_2 \text{ if } |w - v| < \frac{q}{8}$$

 $\mathbf{pk} = (a_i, b_i), \ \mathbf{sk} = s \text{ and ciphertext } c = (c_1, c_2, c_3), \text{ where}$ $c_1 = \sum r_i a_i, \quad v = \sum r_i \odot_{n/2} b_i, \quad c_2 = \langle v \rangle_2 \text{ and}$ $c_3 = H(\lfloor v \rfloor_2) \oplus \mu.$

Sequence of steps:

 Distinguishing advantage of IND-CPA game upper bounded by advantage of computing preimage [v]₂ of H,

$$\mathbf{pk} = (a_i, \$), \mathbf{sk} = s$$
 and ciphertext $c = (c_1, c_2, c_3),$ where

$$c_1 = \sum r_i a_i, \quad v = \sum r_i \odot_{n/2} \$, \quad c_2 = \langle v \rangle_2$$
 and

$$c_3 = H(\lfloor v \rfloor_2) \oplus \mu.$$

Sequence of steps:

- Distinguishing advantage of IND-CPA game upper bounded by advantage of computing preimage [v]₂ of H,
- Replace second component of pk by rounded uniform samples (use Comp-MP-LWR assumption),

 $\mathbf{pk} = (a_i, \$), \ \mathbf{sk} = s \text{ and ciphertext } c = (c_1, c_2, c_3), \text{ where}$

$$c_1 = \sum r_i a_i, \quad v = \$, \quad c_2 = \langle \$ \rangle_2$$
 and
 $c_3 = H([\$]_2) \oplus \mu.$

Sequence of steps:

- Distinguishing advantage of IND-CPA game upper bounded by advantage of computing preimage [v]₂ of H,
- Replace second component of pk by rounded uniform samples (use Comp-MP-LWR assumption),
- Replace v by uniform sample, thus c₂ is also uniform (use Generalized LHL),

 $\mathbf{pk} = (a_i, \$), \ \mathbf{sk} = s \text{ and ciphertext } c = (c_1, c_2, c_3), \text{ where}$

$$c_1 = \sum r_i a_i, \quad v = \$, \quad c_2 = \langle \$ \rangle_2$$
 and
 $c_3 = H([\$]_2) \oplus \mu.$

Sequence of steps:

- Distinguishing advantage of IND-CPA game upper bounded by advantage of computing preimage [v]₂ of H,
- Replace second component of pk by rounded uniform samples (use Comp-MP-LWR assumption),
- Replace v by uniform sample, thus c₂ is also uniform (use Generalized LHL),
- As c_1 and c_2 are independent, adversary can only guess preimage of *H*.

Parameter Choice 1/2

Let λ be the security parameter and c > 0 be a positive constant.

Parameter	[RSSS17]	Our work
n	$\geq \lambda$	$\geq \lambda$
t	$\Theta(\log n)$	$\Theta(\log n)$
q	$\Theta(n^{2.5+c}\sqrt{\log n})$	$\Theta(n^{4+c}\log^2 n)$
log q	$\Theta(\log n)$	$\Theta(\log n)$
α	$\Theta\left(\frac{1}{n\sqrt{\log n}}\right)$	-
р	-	$\Theta(n \log n)$ $O(n^{2+c})$
В	-	$O(n^{2+c})$

Figure: Comparison of asymptotic parameters

- \Rightarrow scheme is **correct** and **secure**,
- \Rightarrow asymptotically, key and ciphertext size dominated by log q.

 \Rightarrow increase of q due to restrictions in hardness proof and correctness

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Middle-Product Learning with Rounding Problem

Let $n \ge \lambda$ and let t be the number of samples.

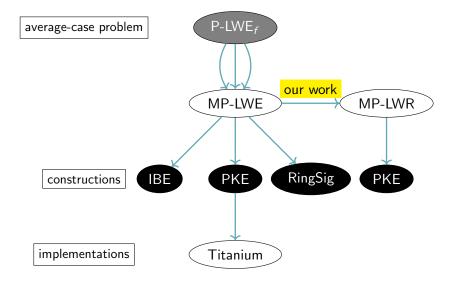
Parameter	[RSSS17]	Our work
log q	$\Theta(\log n)$	$\Theta(\log n)$
Key size		
sk	$(2n-1) \cdot \log q$	$(2n-1) \cdot \log q$
pk	$t \cdot (2n \log q)$	$t \cdot (n \log q + n \log p)$
Ciphertext size		
<i>c</i> ₁	$(3/2n)\log q$	$(3/2n)\log q$
<i>c</i> ₂	n/2 log q	n/2
<i>C</i> ₃	-	n/2

Figure: Comparison of key and ciphertext sizes

Concrete Security

- In **practice**: derive parameters from the best known attacks (e.g. BKZ with quantum sieving)
- Primal and dual attack on public key/ciphertext
- Using Toeplitz-matrix representation to define the underlying lattice (ignore sparse structure)
- Recently, Sakzad, Steinfeld and Zhao improve the crypto-analysis [SSZ19]

Big Picture Middle-Product



Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang Middle-Product Learning with Rounding Problem

Open Questions

- Reduction from decisional MP-LWE to decisional MP-LWR⁴,
- Alternatively: search-to-decision reduction for MP-LWR,
- PKE based on MP-LWR in the standard model,
- Using small secret to gain in efficiency.

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Middle-Product Learning with Rounding Problem

⁴Carries over to other structured LWR variants.

Open Questions

- Reduction from decisional MP-LWE to decisional MP-LWR⁴,
- Alternatively: search-to-decision reduction for MP-LWR,
- PKE based on MP-LWR in the standard model,
- Using small secret to gain in efficiency.

Thank you

Bai, Boudgoust, Das, Roux-Langlois, Wen, Zhang

Middle-Product Learning with Rounding Problem

⁴Carries over to other structured LWR variants.

References I

- A. Banerjee, C. Peikert, and A. Rosen, Pseudorandom functions and lattices, Advances in Cryptology -EUROCRYPT 2012, Proceedings, 2012, pp. 719–737.
- L. Chen, Z. Zhang, and Z. Zhang, **On the hardness of the computational ring-lwr problem and its applications**, Advances in Cryptology ASIACRYPT 2018, Proceedings, Part I, 2018, pp. 435–464.
- V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with errors over rings, Advances in Cryptology - EUROCRYPT 2010, Proceedings, 2010, pp. 1–23.
- C. Peikert, Lattice cryptography for the internet, Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014, Proceedings, 2014, pp. 197–219.

References II

- O. Regev, On lattices, learning with errors, random linear codes, and cryptography, Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 2005, pp. 84–93.
- M. Rosca, A. Sakzad, D. Stehlé, and R. Steinfeld,
 Middle-product learning with errors, Advances in Cryptology - CRYPTO 2017, Proceedings, Part III, 2017, pp. 283–297.
- D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, Efficient public key encryption based on ideal lattices, Advances in Cryptology - ASIACRYPT 2009, Proceedings, 2009, pp. 617–635.