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Provably secure public-key cryptography
needs well-defined assumptions in the form
of mathematical problems.

Current problems:

Discrete Logarithm

Factoring

� ∃ poly-time quantum algorithm [Sho97].

Sources for assumedly quantum-resistant
problems:

Euclidean Lattices

Codes

Isogenies

Multivariate Systems

?

� my research
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Hard Lattice Problems

An Euclidean lattice Λ of rank n with a basis
B = (bj)1≤j≤n is given by

Λ(B) =





n�

j=1

zjbj : zj ∈ Z



 .

The minimum of Λ is

λ1(Λ) := min
v∈Λ\{0}

�v� .

The approximate shortest vector problem
(SVPγ) for γ ≥ 1 asks to find a vector w such
that �w� ≤ γλ1(Λ).

Conjecture:
There is no polynomial-time classical or
quantum algorithm that solves SVPγ and its
variants to within polynomial factors.

� Hard to build cryptography on top of SVPγ .

b1b2

λ1

γλ1
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Lattice-Based Cryptography

� Idea: use intermediate problems!

(Main) Mathematical Problems:

Short Integer Solution [Ajt96]

NTRU [HPS98]

Learning With Errors [Reg05]

� Strong security guarantees
At least as hard as variants of SVPγ

for any Euclidean lattice
� Efficiency

Linear algebra & parallelizable
� Many cryptographic applications

Fully Homomorphic Encryption,
E-Voting, Zero-Knowledge Proofs, ...

b1b2
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NIST Competition �

Started in 2016: NIST project to define new standards for post-quantum cryptography.

A majority (5 out of 7) of the finalist candidates are based on lattice problems.

Several among them (3 out of 5) are based on (variants of) Learning With Errors.

Public Key Encryption �

Kyber: (module variant of) Learning With Errors

Saber: (deterministic module variant of) Learning With Errors

Digital Signature �

Dilithium: (module variant of) Learning With Errors

Observation �

Lattice-based cryptography, and in particular Learning With Errors, plays a key role in
designing post-quantum cryptography.
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Learning With Errors
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The Learning With Errors (LWE) Problem [Reg05]
Set Zq := Z/qZ for some integer q.

Given A ∼ Unif(Zm×d
q ), b ∈ Zm

q , s ∼ DistrS over Zd, e ∼ DistrE over Zm such that

A , A

s

+ e = b mod q.m

d

Search: find secret s

Decision: distinguish from ( A , b ), where b ∼ Unif(Zm
q )

Standard: DistrS = Unif(Zd
q) DistrE = Gauss(Zm)

Binary Secret: DistrS = Unif({0, 1}d) DistrE = Gauss(Zm)

Rounding: DistrS = Unif(Zd
q) DistrE �= deterministic depends on A & s

� Storage m(d+ 1) log2 q bits ∼ Õ(λ2)
� Computation O(md) ∼ O(λ2)

λ security parameter
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Idea �

Reduce needed storage of the public key
and speed-up the computations

by adding structure!

⇒ structured variants of Learning With Errors

� my research
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My Contributions

A , A

s

+ e = b

I. Study of existing structured variants

1. Module Learning With Errors with a binary secret

2. Classical hardness of Module Learning With Errors

II. Proposing new structured variants

3. Middle-Product Learning With Rounding

4. Partial Vandermonde Learning With Errors �
III. Building public key encryption

5. Based on MP-LWR (3.)

6. PASS Encrypt, related to (4.)

Asiacrypt’20
CT-RSA’21

Asiacrypt’19
& under submission

provable
secure

�
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Hardness of

Module Learning With Errors
Joint work with C. Jeudy, A. Roux-Langlois and W. Wen
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Ring of Integers over a Number Field

� Idea: replace Z by the ring of integers R of some number field K of degree n.

Think of R = Z[x]/�xn + 1� and K = Q[x]/�xn + 1� with n = 2�.

Before: multiplication of two integers a · s ∈ Z
Now: multiplication of two polynomials a · s ∈ R modulo xn + 1

� Note: defines matrix-vector multiplication over Z , denoted by Rot(a) · s .

Example: n = 4 thus R = Z[x]/�x4 + 1�


a11 a12
a21 a22
a31 a32
a41 a42


 ·

�
s1
s2

�
∈ R

nd = 8

nm = 16 · ∈ Z .

structured

m = 4

d = 2
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Module Learning With Errors (Module-LWE, M-LWE) [BGV12, LS15]

Let R be the ring of integers of some number field K of degree n, set Rq = R/qR.

Given A ∼ Unif(Rm×d
q ), b ∈ Rm

q , s ∼ DistrS over Rd, e ∼ DistrE over Rm such that

A , A

s

+ e = b mod q.m

rank d

a11

a11 ∈ Rq

Rot(a11) ∈ Zn×n
q

Search: find secret s

Decision: distinguish from ( A , b ), where b ∼ Unif(Rm
q )

Standard: DistrS = Unif(Rd
q) DistrE = Gauss(Rm)

Binary Secret: DistrS = Unif({0, 1}dn) DistrE = Gauss(Rm)

For d = 1, we call this Ring-LWE [SSTX09, LPR10].
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Motivation: Theory vs. Praxis

Lattice Problem
SVPγ

Standard LWE

[Reg05]

Public Key Crypto

Binary Secret LWE

[GKPV10] [BLP+13, Mic18]

Module Lattice Problem
Mod-SVPγ

Standard M-LWE

[LS15]

Public Key Crypto

Binary Secret M-LWE

1 , 2 3

K number field with ring of integers R
M module over R �= module lattice

Contributions:

1 Extending and Improving [GKPV10] to M-LWE � [BJRW20] Asiacrypt’20

2 Extending [BLP+13] to M-LWE � [BJRW21] CT-RSA’21

3 Generalizing both proofs to bounded secrets � [Bou21] PhD Thesis
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Hardness of Module-LWE with Binary Secrets (Cyclotomics)

Standard M-LWE → Binary Secret M-LWE
modulus q modulus q

ring degree n ring degree n

secret s� mod q secret s mod 2

Gaussian width α Gaussian width β

rank k rank d

Property Contribution 1 Contribution 2

LWE analogue [GKPV10] using RD� [BLP+13]

minimal rank d k log2 q + Ω(log2 n) (k + 1) log2 q + ω(log2 n)

noise ratio β/α O(n2√md) O(n2
√
d)

conditions on q prime number-theoretic restrictions

decision/search search decision

⇒ both proofs have their (dis)advantages

pow-of-two:
q prime and

q = 5 mod 8

� practice

�

�Rényi Divergence
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Proof of Hardness of Module-LWE with Binary Secrets

The secret s ∈ Rd
2 is binary and the secret s� ∈ Rk

q is modulo q.

, + M-LWE with binary secretA A s em

d

+ , + +

1
multiple-secrets M-LWE

B
C

Z B
C s Z s e

k

, , , +

2
1 improved noise flooding

using the Rényi Divergence

2 via extended M-LWE
with hints on the noise

B
C

Z B
s�

e�

3leftover hash lemma
d ≥ k log2(q) 1 + Ω(log2 n)

2 + ω(log2 n)

M-LWE with uniform secret
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Improved Noise Flooding via Rényi Divergence 1/2

Let P,Q be discrete probability distributions.

In [GKPV10]: Statistical Distance

SD(P,Q) =
1

2

�

x∈Supp(P )

|P (x)−Q(x)|

In our work: Rényi Divergence

RD(P,Q) =
�

x∈Supp(P )

P (x)2

Q(x)

Example: two Gaussians Dβ and Dβ,s

RD(Dβ , Dβ,s) = exp
�

2π�s�2
β2

�

SD(Dβ , Dβ,s) =
√
2π�s�
β
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Improving 2 by using Rényi Divergence 2/2

Both fulfill the probability preservation property for an event E:

[GKPV10]: P (E) ≤ SD(P,Q) +Q(E) (additive)
Our work: P (E)2 ≤ RD(P,Q) ·Q(E) (multiplicative)

We need: Q(E) negligible ⇒ P (E) negligible

Thus: SD(P,Q) =! negligible and RD(P,Q) =! constant

Back to example: two Gaussians Dβ and Dβ,s with �s� ≤ α

SD(Dβ , Dβ,s) =
√
2π�s�
β

⇒ α/β ≤ negligible

RD(Dβ , Dβ,s) = exp
�

2π�s�2
β2

�
≈ 1 + 2π�s�2

β2 ⇒ α/β ≤ constant

� Rényi Divergence only for search problems.
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Motivation (Continued)

Lattice Problem
SVPγ

Standard LWE

quantum [Reg05] classical [Pei09, BLP+13]

Public Key Crypto

Binary Secret LWE

[GKPV10, BLP+13]

Module Lattice Problem
Mod-SVPγ

Standard M-LWE

quantum [LS15] 4

Public Key Crypto

Binary Secret M-LWE

1 , 2 3

Contributions:

4 Classical reduction, modulus q is poly-small, but linear rank � [BJRW20]
extending [Pei09] and [BLP+13] to M-LWE
and combining them with [PRS17]�

�Pseudorandomness of ring-LWE for any ring and modulus C. Peikert, O. Regev and N. Stephen-Davidowitz
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Classical Hardness of Module-LWE

High level idea following [BLP+13]:

Step 1: Classical reduction from decision Mod-SVPγ to decision Module-LWE with
exponentially large modulus q

� Extending [Pei09] (classical) and [PRS17] (decision) to the module variants.

Step 2: Reduction from Module-LWE with uniform secret to Module-LWE with
binary secret
� Using either Contribution 1 or 2 presented before.
� Leftover hash lemma requires rank ≥ log(q) = log(2n) = n.

Step 3: Modulus reduction from exponentially large to polynomially small modulus
for Module-LWE with binary secret
� Using [AD17], computing bounds on singular values of rotation matrix, loss in
the reduction depends on the norm of the secret.
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Partial Vandermonde

Learning With Errors
Joint work with A. Sakzad and R. Steinfeld

Under submission
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Partial Vandermonde Transform [HPS+14, LZA18]

Again: Let R be the ring of integers of a number field K of degree n.
Think of R = Z[x]/�xn + 1� and K = Q[x]/�xn + 1� with n = 2�.

Choose q prime such that q = 1 mod 2n:

xn + 1 =
�n

j=1(x− ωj), where ωj is a primitive 2n-th root of unity in Zq

The set {ωj}j=1,...,n defines the Vandermonde transform V : R → Zn
q , where

V · a =




1 ω1 · · · ωn−1
1

1 ω2 · · · ωn−1
2

1 ω3 · · · ωn−1
3

...
...

1 ωn · · · ωn−1
n



·




a1
a2
a3
...
an




=




b1
b2
b3
...
bn




= b mod q.

Observation: b = (bj)j=1,...,n uniquely defines a and vice versa. (V−1 exists)

Question: What happens if we only provide t out of n coefficients? (say half)

Note: For Ω ⊆ {ωj}j=1,...,n write VΩ · a = b. (partial Vandermonde transform)
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Partial Vandermonde Problems
Choose a random subset Ω ⊆ {ωj}j=1,...,n of size |Ω| = t.

Partial Vandermonde knapsack problem (PV-Knap): Sample e ∼ DistrE over Zn defining

e = b mod q.

Search: find e

Partial Vandermonde Learning With Errors (PV-LWE): Sample s ∼ DistrS over Zt and

e ∼ DistrE over Zn defining

s

+ e = b mod q.

Search: find e (and secret s )

Conjecture: Hard to solve if DistrE provides elements of small norm.

VΩ

VT
Ω
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Equivalence of PV-Knap and PV-LWE

Let t = n/2 and set Pt = {Ω ⊆ {ωj}j=1,...,n : |Ω| = t}.
Property 1: VΩ defines a ring homomorphism from R to Zt

q :

VΩ(a · b) = (VΩa) ◦ (VΩb)

(component-wise multiplication ◦)
Property 2: Ωc = {ωj}j \ Ω defines the complement partial Vandermonde transform VΩc .

Given VΩa and VΩca, we can recover a.

Property 3: For every Ω ∈ Pt, there exists a Ω� ∈ Pt such that

VΩ� ·VT
Ω = 0 ∈ Zt×t

q .

(parity check matrix, � only for power-of-two cyclotomics)

Lemma (Adapted [MM11, Sec. 4.2])

Let ψ denote a distribution over Zn ∼= R. There is an efficient reduction from PV-LWEψ to
PV-Knapψ , and vice versa.

Idea: Given (VΩ, b), with b = VT
Ωs+ e. Compute Ω� such that VΩ� ·VT

Ω = 0.

Then, b� := VΩ�b = VΩ�e is an instance of PV-Knap.

Katharina Boudgoust PhD Defense 16th November 2021 24 / 30



PASS Encrypt [HS15]

[HS15] Our work
deterministic randomized
without proof of security with proof of security
fixed VΩ random VΩ

Let p � q be two primes, m ∈ {0, 1}n, ψ a distribution over Zn and t = n/2.

KeyGen(1λ): sample f ← ψ and Ω ← Unif(Pt); return sk = f and pk = (Ω,VΩf)

Enc(pk,m): sample r, s ← ψ; set r� = pr and s� = m+ ps
e1 = (pk ◦VΩr

�) +VΩs
�

e2 = VΩcr�

e3 = VΩcs�

return c = (e1, e2, e3)

Dec(sk, c): compute c� = (VΩc sk ◦ e2) + e3 and combine with e1 to c�� ∈ Zn
q ;

return V−1c�� mod p.

Recall: VΩ and VΩc define V and V−1.

Correctness:

e1 = (VΩf ◦VΩr
�) +VΩs

� = VΩ(f · r� + s�)

c� = (VΩc sk ◦ (VΩcr�) +VΩcs� = VΩc (f · r� + s�)

V−1(e1||c�) = V−1(V(f · r� + s�)) = f · pr + ps+m = m mod p

if f, r and s are small enough

ring
homomorphism
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PASS Encrypt [HS15]

[HS15] Our work
deterministic randomized
without proof of security with proof of security
fixed VΩ random VΩ

Let p � q be two primes, m ∈ {0, 1}n, ψ a distribution over Zn and t = n/2.

KeyGen(1λ): sample f ← ψ and Ω ← Unif(Pt); return sk = f and pk = (Ω,VΩf)

Enc(pk,m): sample r, s ← ψ; set r� = pr and s� = m+ ps
e1 = (pk ◦VΩr

�) +VΩs
�= VΩ(f · r� + s�)

e2 = VΩcr�

e3 = VΩcs�

return c = (e1, e2, e3)

Dec(sk, c): compute c� = (VΩc sk ◦ e2) + e3 and combine with e1 to c�� ∈ Zn
q ;

return V−1c�� mod p.

Security:
e1 = VΩ(f · r� + s�) defines an instance of PV-Knap
with pk, e2 and e3 as additional information.

⇒ leaky variant of PV-Knap, that we call the PASS problem.

� PASS problem is tailored to PASS Encrypt!
? Reduce it from some more general problem?
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Properties of PASS Encrypt

Homomorphic properties:

Addition: Enc(pk,m1) + Enc(pk,m2) = Enc(pk,m1 +m2)

Multiplication: Enc(pk,m1) ◦ Enc(pk,m2) = Enc(pk,m1 ·m2)

� For ◦, need of 1 additional cross-term and the decryption algorithm has to be changed.

Efficiency:

Scheme NTRU [HPS98] P-LWE Regev [LP11] PASS Encrypt
|c|+|pk|

|m| 2 log2 q 3 log2 q 2.5 log2 q

Concrete Security:

Known: key recovery and randomness recovery attacks [HS15, DHSS20]

New: plaintext recovery using hints attacks

� make use of leaky LWE estimator of Dachman-Soled et al. [DDGR20]
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Conclusion and Perspectives
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Conclusion

A , A

s

+ e = b

I. Study of existing structured variants

1. Module Learning With Errors with a binary secret

2. Classical hardness of Module Learning With Errors

II. Proposing new structured variants

3. Middle-Product Learning With Rounding

4. Partial Vandermonde Learning With Errors
& Knapsack

�
III. Building public key encryption

5. Based on MP-LWR (3.)

6. PASS Encrypt, related to (4.)

Asiacrypt’20
CT-RSA’21

Asiacrypt’19
& under submission

provable
secure

�
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Open Questions and Perspectives

I. Module LWE

Follow-ups �

General secret distributions (Entropic Secret Module-LWE)

Small noise distributions (extending [MP13])

Open questions ?

Classical and binary hardness for smaller ranks, in particular rank equals 1 (Ring-LWE)

� Avoid leftover hash lemma in the reduction?
� Avoid exponentially large modulus in [Pei09]?

Narrow gap between theoretical reductions and practical attacks

II. Partial Vandermonde LWE

Follow-ups �

Construct encryption scheme based only on PV-LWE / PV-Knap

Questions ?

Hardness of partial Vandermonde problems

� Cryptanalysis?
� Worst-case average-case reductions as for LWE?

More cryptographic applications
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Thank you.
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