Lattice-Based Cryptography

A Gentle Introduction

Katharina Boudgoust

CNRS, Univ Montpellier, LIRMM, France

Prelude

- My academic path:
 - 2018 Master in Mathematics, KIT Karlsruhe
 - 2021 PhD in Cryptography, Irisa Rennes
 - 2022-23 Postdoc in Cryptography, Aarhus University
 - Since February Chargée de Recherche CNRS, LIRMM
- 🍱 Misc:
 - Women in Cryptography
 - Climbing and Hiking

Cryptography

The word cryptography is composed of the two ancient Greek words kryptos (hidden) and graphein (to write). Its goal is to provide secure communication.

- Encryption
- Digital Signatures

Cryptography

The word cryptography is composed of the two ancient Greek words kryptos (hidden) and graphein (to write). Its goal is to provide secure communication.

- Encryption
- Digital Signatures
- Zero-Knowledge Proofs
- Fully-Homomorphic Encryption

Context

The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- Discrete logarithm
- Factoring

Given N, find p, q such that $N = p \cdot q$

^{*}Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

Context

The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- Discrete logarithm
- Eactoring

Given N, find p, q such that $N = p \cdot q$

▲ ∃ poly-time quantum algorithm [Sho97]*

Quantum-resistant candidates:

- Codes
- Lattices
- Isogenies
- Multivariate systems
- ?

^{*}Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

Context

The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- Discrete logarithm
- Eactoring

Given N, find p, q such that $N = p \cdot q$

▲ ∃ poly-time quantum algorithm [Sho97]*

Quantum-resistant candidates:

- Codes
- Lattices ⇒ my focus
- Isogenies
- Multivariate systems
- ?

^{*}Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal of Computations 1997

US National Institute of Standards and Technology (NIST) Project X

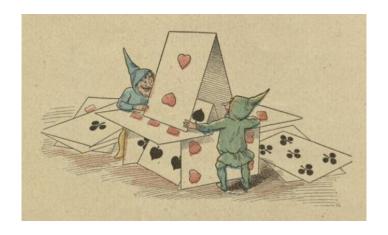
- 2016: start of NIST's post-quantum cryptography project*
- 2022: selection of 4 schemes, 3 of them relying on lattice problems
- Public Key Encryption:
 - Kyber

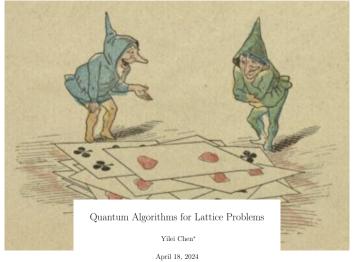
Digital Signature:

- Dilithium
- Falcon ***FALCON**
- SPHINCS+ SPHINCS

Lattice-based cryptography plays a leading role in designing post-quantum cryptography.

^{*}https://csrc.nist.gov/projects/post-quantum-cryptography

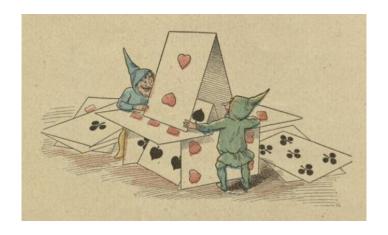




ia.cr/2024/555

April 18, 2024

ia.cr/2024/555



Overview of Today's Presentation

- Questions we are trying to answer today:
 - Part 1: What are lattices?
 - Part 2: What are lattice problems?
 - Part 3: What is lattice-based cryptography?
 - Part 4: What are some (of my) current challenges?
- References:
 - The Lattice Club [website]
 - Crash Course Spring 2022 [lecture notes]

Part $\overline{1}$:

What is a lattice?

 \triangle An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

\triangle An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

- additive subgroup: $0 \in \Lambda$, and for all $x, y \in \Lambda$ it holds $x + y, -x \in \Lambda$;
- discrete: every $x \in \Lambda$ has a neighborhood in which x is the only lattice point.

$$\exists \varepsilon > 0$$
 such that $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda = \{ \mathbf{x} \}$

\triangle An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

- additive subgroup: $0 \in \Lambda$, and for all $x, y \in \Lambda$ it holds $x + y, -x \in \Lambda$;
- discrete: every $x \in \Lambda$ has a neighborhood in which x is the only lattice point. $\exists \varepsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda = \{ \mathbf{x} \}$

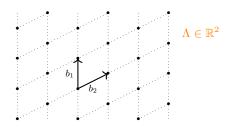
There exists a finite basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \subset \mathbb{R}^n$ such that

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\}.$$

• n is the dimension of Λ

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ , i.e.,

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_{i} \mathbf{b}_{i} \colon z_{i} \in \mathbb{Z} \right\} = \left\{ \mathbf{Bz} \colon \mathbf{z} \in \mathbb{Z}^{n} \right\}.$$



Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ , i.e.,

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_{i} \mathbf{b}_{i} \colon z_{i} \in \mathbb{Z} \right\} = \left\{ \mathbf{Bz} \colon \mathbf{z} \in \mathbb{Z}^{n} \right\}.$$

 $oldsymbol{\mathbf{U}}\in\mathbb{Z}^{n imes n}$ unimodular, then $\widetilde{\mathbf{B}}=\mathbf{B}\cdot\mathbf{U}$ also a basis of Λ

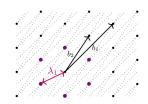
 $det(\mathbf{U}) = \pm 1$

• $det(\Lambda) := |det(\mathbf{B})|$

Lattice Minimum & Special Lattices

The **minimum** of a lattice $\Lambda \subset \mathbb{R}^n$ is defined as

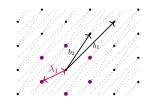
$$\label{eq:lambda1} {\color{blue} \boldsymbol{\lambda}_1(\boldsymbol{\Lambda}) = \min_{\mathbf{x} \in \boldsymbol{\Lambda} \setminus \{\mathbf{0}\}} {\lVert \mathbf{x} \rVert}_2}.$$



Lattice Minimum & Special Lattices

The **minimum** of a lattice $\Lambda \subset \mathbb{R}^n$ is defined as

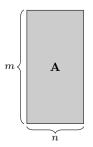
$$\lambda_1(\Lambda) = \min_{\mathbf{x} \in \Lambda \setminus \{\mathbf{0}\}} \|\mathbf{x}\|_2.$$



Let $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ for some $n, m, q \in \mathbb{N}$ with $n \leq m$

$$\mathbb{Z}_q$$
 integers modulo q

$$\Lambda_q(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{Z}^m \colon \mathbf{y} = \mathbf{A}\mathbf{s} \bmod q \text{ for some } \mathbf{s} \in \mathbb{Z}^n \}$$
$$\Lambda_q^{\perp}(\mathbf{A}) = \left\{ \mathbf{y} \in \mathbb{Z}^m \colon \mathbf{A}^T \mathbf{y} = \mathbf{0} \bmod q \right\}$$



Part 2:

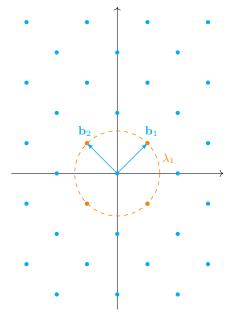
What are lattice problems?

Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n.

The shortest vector problem (SVP) asks to find a vector $\mathbf{w} \in \Lambda$ such that

$$\|\mathbf{w}\|_2 = \lambda_1(\Lambda).$$

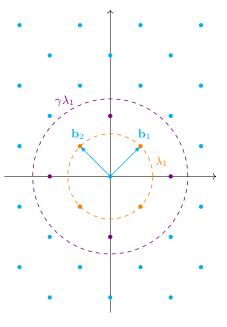


Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n.

The approximate shortest vector problem (SVP $_{\gamma}$) for $\gamma \geq 1$ asks to find a vector $\mathbf{w} \in \Lambda$ such that

$$\|\mathbf{w}\|_2 \le \gamma \lambda_1(\Lambda).$$



Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^n$ of dimension n.

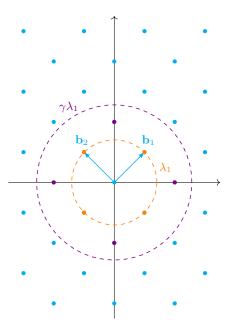
The approximate shortest vector problem (SVP $_{\gamma}$) for $\gamma \geq 1$ asks to find a vector $\mathbf{w} \in \Lambda$ such that

$$\|\mathbf{w}\|_2 \le \gamma \lambda_1(\Lambda).$$

The complexity of SVP_γ increases with n, but decreases with $\gamma.$

Conjecture:

There is no polynomial-time classical or quantum algorithm that solves SVP_γ for any lattice to within polynomial factors.



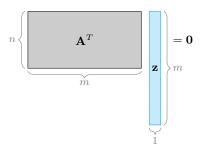
Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random and bound $\beta > 0.$

^{*}Ajtai, Generating hard instances of lattice problems, STOC'96

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random and bound $\beta > 0$.

The short integer solution (SIS $_{\beta}$) problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $0 < \|\mathbf{z}\|_2 \leq \beta$ such that

 $\mathbf{A}^T\mathbf{z} = \mathbf{0} \bmod q.$



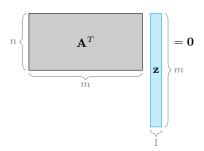
^{*}Ajtai, Generating hard instances of lattice problems, STOC'96

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random and bound $\beta > 0$.

The short integer solution (SIS $_{\beta}$) problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $0 < \|\mathbf{z}\|_2 \leq \beta$ such that

$$\mathbf{A}^T\mathbf{z} = \mathbf{0} \bmod q.$$

▲ The norm restriction makes it a hard problem!



^{*}Ajtai, Generating hard instances of lattice problems, STOC'96

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random and bound $\beta > 0$.

The short integer solution (SIS $_{\beta}$) problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $0 < \|\mathbf{z}\|_2 \leq \beta$ such that

$$\mathbf{A}^T \mathbf{z} = \mathbf{0} \bmod q.$$

 $n\left\{ \begin{array}{c|c} \mathbf{A}^T & \mathbf{z} \\ \hline & \mathbf{z} \end{array} \right\} = \mathbf{0}$

⚠ The norm restriction makes it a hard problem!

Recall:

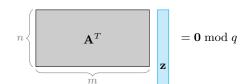
$$\Lambda_q^{\perp}(\mathbf{A}) = \left\{\mathbf{y} \in \mathbb{Z}^m \colon \mathbf{A}^T\mathbf{y} = \mathbf{0} \bmod q \right\}$$

^{*}Ajtai, Generating hard instances of lattice problems, STOC'96

Example Parameters for Short Integer Solution

Parameters:

- $\bullet \ \mathbf{A} \in \mathbb{Z}_q^{n \times m} \ \mathrm{and} \ \|\mathbf{z}\|_2 \leq \beta$
- m = ?
- \bullet n=?
- q = ?
- $\boldsymbol{\delta} = ?$



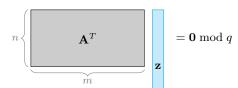
Use the lattice estimator*

^{*}https://github.com/malb/lattice-estimator

Example Parameters for Short Integer Solution

Parameters:

- $\bullet \ \mathbf{A} \in \mathbb{Z}_q^{n \times m} \ \mathrm{and} \ \|\mathbf{z}\|_2 \leq \beta$
- ullet m is a function in n
- \bullet n=?
- q = ?
- $\beta = ?$



n	q	β	security bits
50	2^{5}	30	39
50	2^{10}	30	62
50	2^{10}	50	47
200	2^{10}	50	212
200	2^{10}	200	107
500	2^{10}	500	213

^{*}https://github.com/malb/lattice-estimator

Part 3:

What is lattice-based cryptography?

Collision-Resistant Hash Function from SIS [Ajt96]*

A function $f : \mathsf{Domain} \to \mathsf{Range}$ is called **collision-resistant** if it is hard to output two elements $\mathbf{x}, \mathbf{x}' \in \mathsf{Domain}$ such that

$$f(\mathbf{x}) = f(\mathbf{x}') \text{ and } \mathbf{x} \neq \mathbf{x}'.$$

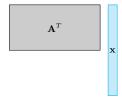
^{*}Ajtai, Generating hard instances of lattice problems, STOC'96

Collision-Resistant Hash Function from SIS [Ajt96]*

A function $f: \mathsf{Domain} \to \mathsf{Range}$ is called **collision-resistant** if it is hard to output two elements $\mathbf{x}, \mathbf{x}' \in \mathsf{Domain}$ such that

$$f(\mathbf{x}) = f(\mathbf{x}') \text{ and } \mathbf{x} \neq \mathbf{x}'.$$

Set $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n$ with $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}^T \mathbf{x} \bmod q$ for $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.



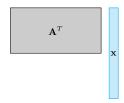
^{*}Ajtai, Generating hard instances of lattice problems, STOC'96

Collision-Resistant Hash Function from SIS [Ajt96]*

A function $f : \mathsf{Domain} \to \mathsf{Range}$ is called **collision-resistant** if it is hard to output two elements $\mathbf{x}, \mathbf{x}' \in \mathsf{Domain}$ such that

$$f(\mathbf{x}) = f(\mathbf{x}') \text{ and } \mathbf{x} \neq \mathbf{x}'.$$

Set $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n \text{ with } f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}^T \mathbf{x} \bmod q \text{ for } \mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n}).$



Exercise: Assuming SIS is hard to solve for $\beta = \sqrt{m}$, then f_A is collision-resistant

Hint:
$$\mathbf{x} \neq \mathbf{x}' \in \{0, 1\}^m \Leftrightarrow \mathbf{0} \neq \mathbf{x} - \mathbf{x}' \in \{-1, 0, 1\}^m$$

$$\mathbf{A}^T \mathbf{x} = \mathbf{A}^T \mathbf{x}' \Leftrightarrow \mathbf{A}^T (\mathbf{x} - \mathbf{x}') = 0$$

^{*}Ajtai, Generating hard instances of lattice problems, STOC'96

More lattice problems and constructions at the ICO meeting this Friday :-)

https://www.ico-occitanie.fr

Part 4:

What are (my) current challenges?

Digital Signatures [DH76]*

^{*}Diffie and Hellman, New directions in cryptography, IEEE Trans.Inf.Theory 1976

Digital Signatures [DH76]*

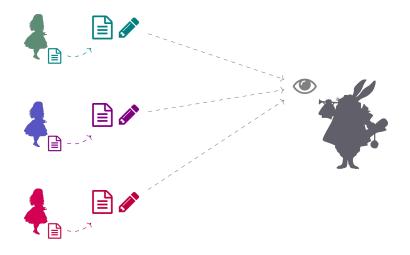
Motivation:

- Digital analogue of handprint signature
- Even more secure?
- $\bullet \ \, \text{Even more functionalities?} \, \Rightarrow \, \text{my focus} \\$

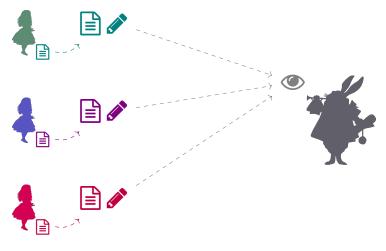
^{*} Diffie and Hellman, New directions in cryptography, IEEE Trans.Inf.Theory 1976

Multiple Signers and Messages, but Same Verifier

Multiple Signers and Messages, but Same Verifier



Multiple Signers and Messages, but Same Verifier



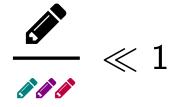
Q: Can we combine ${\mathscr N}, {\mathscr N}$ and ${\mathscr N}$ into a single compact signature? And more generally for $N\gg 3$ many signatures?

Aggregate Signatures [BGLS03]*

^{*}Boneh, Gentry, Lynn and Shacham, Aggregate and Verifiably Encrypted Signatures from Bilinear Maps, EUROCRYPT'03

Objectives

Compression Rate:



Preferable Goals:

- As low compression rates as possible
- Presumed post-quantum security
- Compatible with international standards (Dilithium and Falcon)
- As fast signing, aggregation and verification as possible

Research Question:

Can we construct an aggregate signature scheme based on **Euclidean lattices?**

Research Question:

Can we construct an aggregate signature scheme based on **Euclidean lattices?**

Failure:

compression rate > 1
Dilithium-type
ia.cr/2021/263
CFAIL'22
with A. Roux-Langlois

Semi-Success:

1 > compression rate > 0.99 Dilithium-type ia.cr/2023/159 ESORICS'23 with A. Takahashi

Success:

compression rate $\rightarrow 0.06$ Falcon ia.cr/2024/311 CRYPTO'24

with M. Aardal, D. Aranha S. Kolby, A. Takahashi Bonus:

A little Quiz :-)

When poll is active respond at

PollEv.com/ katharinaboudgoust042

Little Quiz after the gentle introduction to lattice-based cryptography (CIEL)

Win up to 1,000 points per answer

Powered by I Poll Everywhere

Wrap-Up

- Mopefully you have now a rough idea:
 - Part 1: What lattices are!
 - Part 2: What lattice problems are!
 - Part 3: What lattice-based cryptography is!
 - Part 4: What (my) particular challenges are!

Any questions or interested in my research?

- PReach out to me (in my office E2.14)
- Write me an e-mail

Wrap-Up

- Mopefully you have now a rough idea:
 - Part 1: What lattices are!
 - Part 2: What lattice problems are!
 - Part 3: What lattice-based cryptography is!
 - Part 4: What (my) particular challenges are!

Any questions or interested in my research?

- PReach out to me (in my office E2.14)
- Write me an e-mail

Merci!

Generating hard instances of lattice problems (extended abstract). In *STOC*, pages 99–108. ACM, 1996.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham.

Aggregate and verifiably encrypted signatures from bilinear maps.

In *EUROCRYPT*, volume 2656 of *Lecture Notes in Computer Science*, pages 416–432. Springer, 2003.

Whitfield Diffie and Martin E. Hellman.

New directions in cryptography.

IEEE Trans. Inf. Theory, 22(6):644-654, 1976.

Peter W. Shor.

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

SIAM J. Comput., 26(5):1484-1509, 1997.