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Prelude

 My academic path:

2018 Master in Mathematics, KIT Karlsruhe

2021 PhD in Cryptography, Irisa Rennes

2022-23 Postdoc in Cryptography, Aarhus University

Since February Chargée de Recherche CNRS, LIRMM

� Misc:

Women in Cryptography

Climbing and Hiking
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Cryptography

 The word cryptography is composed of the two ancient Greek words kryptos (hidden)
and graphein (to write). Its goal is to provide secure communication.

Encryption

Digital Signatures

Zero-Knowledge Proofs

Fully-Homomorphic Encryption
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Context

 The security in public-key cryptography relies on presumably hard mathematical
problems.

Currently used problems:

Discrete logarithm

Factoring

Given N , find p, q such that N = p · q

 ∃ poly-time quantum algorithm [Sho97]∗

Quantum-resistant candidates:

Codes

Lattices

⇒ my focus

Isogenies

Multivariate systems

?

⋆Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,
SIAM Journal of Computations 1997
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US National Institute of Standards and Technology (NIST) Project

2016: start of NIST’s post-quantum cryptography project⋆

2022: selection of 4 schemes, 3 of them relying on lattice problems

µ Public Key Encryption:

Kyber

Ò Digital Signature:

Dilithium

Falcon

SPHINCS+

 Lattice-based cryptography plays a leading role in designing post-quantum
cryptography.

⋆https://csrc.nist.gov/projects/post-quantum-cryptography
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Really Post-Quantum?

ia.cr/2024/555

ERROR IN PROOF!
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Overview of Today’s Presentation

v Questions we are trying to answer today:

Part 1: What are lattices?

Part 2: What are lattice problems?

Part 3: What is lattice-based cryptography?

Part 4: What are some (of my) current challenges?

� References:

The Lattice Club [website]

Crash Course Spring 2022 [lecture notes]
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https://thelatticeclub.com/
https://katinkabou.github.io/Documents/PhDCourse_LatticeHardnessAssumptions.pdf


Part 1:

What is a lattice?
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Euclidean Lattices

 An Euclidean lattice Λ is a discrete additive subgroup of Rn.

additive subgroup: 0 ∈ Λ, and for all x,y ∈ Λ it holds x+ y,−x ∈ Λ;

discrete: every x ∈ Λ has a neighborhood in which x is the only lattice point.
∃ε > 0 such that B(x, ε) ∩ Λ = {x }

There exists a finite basis B = (b1, . . . ,bn) ⊂ Rn such that

Λ(B) =

{
n∑

i=1

zibi : zi ∈ Z

}
.

n is the dimension of Λ
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Euclidean Lattices

Let B ∈ Rn×n be a basis for Λ, i.e.,

Λ(B) =

{
n∑

i=1

zibi : zi ∈ Z

}
= {Bz : z ∈ Zn} .
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•

b̃1
b̃2

U ∈ Zn×n unimodular, then B̃ = B ·U also a basis of Λ det(U) = ±1
det(Λ) := |det(B)|

Λ ∈ R2
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Lattice Minimum & Special Lattices

The minimum of a lattice Λ ⊂ Rn is defined as

λ1(Λ) = min
x∈Λ\{0}

∥x∥2.

Let A ∈ Zm×n
q for some n,m, q ∈ N with n ≤ m Zq integers modulo q

Λq(A) = {y ∈ Zm : y = As mod q for some s ∈ Zn}

Λ⊥
q (A) =

{
y ∈ Zm : ATy = 0 mod q

}
Am

n
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Part 2:

What are lattice problems?
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Shortest Vector Problem

Given a lattice Λ ∈ Rn of dimension n.

The shortest vector problem (SVP) asks to
find a vector w ∈ Λ such that

∥w∥2 = λ1(Λ).

The complexity of SVPγ increases with n, but
decreases with γ.

Conjecture:

There is no polynomial-time classical or

quantum algorithm that solves SVPγ for any

lattice to within polynomial factors.

b1b2

λ1

γλ1
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Short Integer Solution [Ajt96]⋆

Given a matrix A ∈ Zm×n
q sampled uniformly at

random and bound β > 0.

The short integer solution (SISβ) problem asks
to find a vector z ∈ Zm of norm 0 < ∥z∥2 ≤ β
such that

AT z = 0 mod q.

 The norm restriction makes it a hard
problem!

Recall:

Λ⊥
q (A) =

{
y ∈ Zm : ATy = 0 mod q

}

ATn

m

z m

1

= 0

 SISβ equals SVPγ in the special lattice Λ⊥
q (A) for β = γ · λ1(Λ

⊥
q (A))

⋆Ajtai, Generating hard instances of lattice problems, STOC’96
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Example Parameters for Short Integer Solution

Parameters:

A ∈ Zn×m
q and ∥z∥2 ≤ β

m = ?

n = ?

q = ?

β = ?

 Use the lattice estimator∗

ATn

m

z

= 0 mod q

n q β security bits

50 25 30 39
50 210 30 62
50 210 50 47

200 210 50 212
200 210 200 107
500 210 500 213

⋆https://github.com/malb/lattice-estimator
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Example Parameters for Short Integer Solution
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Part 3:

What is lattice-based cryptography?
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Collision-Resistant Hash Function from SIS [Ajt96]⋆

A function f : Domain→ Range is called collision-resistant if it is hard to output two
elements x,x′ ∈ Domain such that

f(x) = f(x′) and x ̸= x′.

Set fA : {0, 1}m → Zn
q with fA(x) = ATx mod q for A← Unif(Zm×n

q ).

AT

x

3 Exercise: Assuming SIS is hard to solve for β =
√
m, then fA is collision-resistant

Hint: x ̸= x′ ∈ {0, 1}m ⇔ 0 ̸= x− x′ ∈ {−1, 0, 1}m

ATx = ATx′ ⇔ AT (x− x′) = 0

⋆Ajtai, Generating hard instances of lattice problems, STOC’96
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More lattice problems and constructions

at the ICO meeting this Friday :-)

https://www.ico-occitanie.fr

Katharina Boudgoust (CNRS, LIRMM) Lattice-Based Cryptography 8th July 2024, CIEL LIRMM Montpellier 18 / 27

https://www.ico-occitanie.fr


Part 4:

What are (my) current challenges?
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Digital Signatures [DH76]⋆



 Ò



Motivation:

Digital analogue of handprint signature

Even more secure?

Even more functionalities? ⇒ my focus

⋆Diffie and Hellman, New directions in cryptography, IEEE Trans.Inf.Theory 1976
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Multiple Signers and Messages, but Same Verifier



 Ò



 Ò



 Ò



Q: Can we combine Ò, Ò and Ò into a single compact signature?

And more generally for N ≫ 3 many signatures?
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Aggregate Signatures [BGLS03]⋆







Ò
 



º

⋆Boneh, Gentry, Lynn and Shacham, Aggregate and Verifiably Encrypted Signatures from Bilinear Maps,
EUROCRYPT’03
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Objectives

Compression Rate:

Ò
ÒÒÒ

≪ 1

Preferable Goals:

As low compression rates as possible

Presumed post-quantum security

Compatible with international standards (Dilithium and Falcon)

As fast signing, aggregation and verification as possible
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Research Question:

Can we construct an

aggregate signature scheme

based on Euclidean lattices?

Failure: Semi-Success: Success:
compression rate > 1 1 > compression rate > 0.99 compression rate → 0.06
Dilithium-type Dilithium-type Falcon
ia.cr/2021/263 ia.cr/2023/159 ia.cr/2024/311
CFAIL’22 ESORICS’23 CRYPTO’24
with A. Roux-Langlois with A. Takahashi with M. Aardal, D. Aranha

S. Kolby, A. Takahashi
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Bonus:

A little Quiz :-)
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Wrap-Up

v Hopefully you have now a rough idea:

Part 1: What lattices are!

Part 2: What lattice problems are!

Part 3: What lattice-based cryptography is!

Part 4: What (my) particular challenges are!

Any questions or interested in my research?

7 Reach out to me (in my office E2.14)

 Write me an e-mail

Merci !
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