Lattice-Based Cryptography

A Gentle Introduction - Part 2

Katharina Boudgoust

CNRS, Univ Montpellier, LIRMM, France

Overview

Questions we tried to answer last time:

- What are lattices? 'Infinite, regular grids in high dimensions'
- What are lattice problems? SIS problem: searching for short vectors in specific & random lattices
- What is lattice-based cryptography? Collision-resistant hashing & signatures from SIS
- What are some (of my) current challenges? Aggregating lattice signatures

Today:

- Part 1: Reminder
- Part 2: More lattice problems
- Part 3: How to build encryption schemes
- Part 4: What else you need to know

Part 1: *Reminder*

Euclidean Lattices

Let $\mathbf{B} = (\mathbf{b}_i)_{i=1,...,n}$ be a set of linearly independent vectors, defining the lattice

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\}.$$

Short Integer Solution [Ajt96]*

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random and bound $\beta > 0$.

 $rac{l}{c}$ Solving SIS equals finding a short vector in the specific & random lattice $\Lambda_q^{\perp}(\mathbf{A})$

^{*}Ajtai, Generating hard instances of lattice problems, STOC'96

Part 2:

More lattice problems

Katharina Boudgoust (CNRS, LIRMM)

Lattice-Based Cryptography

12th June 2025, Flashbots Seminar 6 / 22

Given a lattice Λ and a target ${\bf t}$ such that ${\rm dist}(\Lambda,{\bf t})\leq \delta.$

Given a lattice Λ and a target \mathbf{t} such that dist $(\Lambda, \mathbf{t}) \leq \delta$.

The bounded distance decoding (BDD) problem asks to find the unique vector $\mathbf{w} \in \Lambda$ such that

$$\left\|\mathbf{w} - \mathbf{t}\right\|_2 \le \delta.$$

Given a lattice Λ and a target **t** such that dist $(\Lambda, \mathbf{t}) \leq \delta$.

The bounded distance decoding (BDD) problem asks to find the unique vector $\mathbf{w} \in \Lambda$ such that

$$\|\mathbf{w} - \mathbf{t}\|_2 \le \delta.$$

The complexity of BDD increases with the lattice dimension and promised radius δ .

Conjecture:

There is no polynomial-time classical or quantum algorithm that solves BDD for all lattices to within polynomial factors.

But BOD might be easy for some lattices? For instance Zⁿ vorounding to nearest integer Again: restrict to specif + random lattices

Conjecture:

There is no polynomial-time classical or quantum algorithm that solves BDD for all lattices to within polynomial factors.

More specific classes of lattices

• Last time:
$$\Lambda_q^{\perp}(\mathbf{A}) = \left\{ \mathbf{y} \in \mathbb{Z}^m \colon \mathbf{A}^T \mathbf{y} = \mathbf{0} \bmod q
ight\}$$

• This time: $\Lambda_q(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{Z}^m : \mathbf{y} = \mathbf{As} \mod q \text{ for some } \mathbf{s} \in \mathbb{Z}^n \}$

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

*Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE) asks to find s.

Decision learning with errors (D-LWE) asks to distinguish (\mathbf{A}, \mathbf{b}) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE) asks to find s.

Decision learning with errors (D-LWE) asks to distinguish (\mathbf{A}, \mathbf{b}) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

A The present noise makes S-LWE a hard problem.

A The norm restriction on e makes D-LWE a hard problem!

Katharina Boudgoust (CNRS, LIRMM)

Lattice-Based Cryptography

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE) asks to find s.

Decision learning with errors (D-LWE) asks to distinguish (\mathbf{A}, \mathbf{b}) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

A The present noise makes S-LWE a hard problem.

A The norm restriction on e makes D-LWE a hard problem!

 $rac{l}{C}$ S-LWE equals BDD in the specific & random lattice $\Lambda_q(\mathbf{A})$.

*Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Connection between LWE and SIS

If there is an efficient solver for SIS, then there is an efficient solver for D-LWE.

Proof.

Given (\mathbf{A}, \mathbf{b}) , our goal is to decide whether 1) $\mathbf{b} = \mathbf{As} + \mathbf{e}$ for short error \mathbf{e} or 2) $\mathbf{b} \leftarrow \text{Unif}(\mathbb{Z}_q^m)$.

Proof.

Given (\mathbf{A}, \mathbf{b}) , our goal is to decide whether 1) $\mathbf{b} = \mathbf{As} + \mathbf{e}$ for short error \mathbf{e} or 2) $\mathbf{b} \leftarrow \text{Unif}(\mathbb{Z}_q^m)$.

Forward A to SIS-solver and receive back z such that $A^T z = 0 \mod q$ and z short.

Proof.

Given (\mathbf{A}, \mathbf{b}) , our goal is to decide whether 1) $\mathbf{b} = \mathbf{As} + \mathbf{e}$ for short error \mathbf{e} or 2) $\mathbf{b} \leftarrow \text{Unif}(\mathbb{Z}_q^m)$.

Forward A to SIS-solver and receive back z such that $\mathbf{A}^T \mathbf{z} = \mathbf{0} \mod q$ and z short.

Compute $\|\mathbf{b}^T \mathbf{z}\|$. If the norm is $\ll q$, claim that we are in case 1). Else, claim that we are in case 2).

Proof.

Given (\mathbf{A}, \mathbf{b}) , our goal is to decide whether 1) $\mathbf{b} = \mathbf{As} + \mathbf{e}$ for short error \mathbf{e} or 2) $\mathbf{b} \leftarrow \text{Unif}(\mathbb{Z}_q^m)$.

Forward A to SIS-solver and receive back z such that $A^T z = 0 \mod q$ and z short.

Compute $\|\mathbf{b}^T \mathbf{z}\|$. If the norm is $\ll q$, claim that we are in case 1). Else, claim that we are in case 2).

Case 1) $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, thus $\mathbf{b}^T \mathbf{z} = \mathbf{s}^T \mathbf{A}^T \mathbf{z} + \mathbf{e}^T \mathbf{z} = \mathbf{e}^T \mathbf{z} \mod q$. Thus $\|\mathbf{b}^T \mathbf{z}\| \le \|\mathbf{e}\| \cdot \|\mathbf{z}\| \ll q$.

Case 2) b uniform, so is $\mathbf{b}^T \mathbf{z}$ and hence $\|\mathbf{b}^T \mathbf{z}\|$ is not particularly small with high chances.

Example Parameters for Learning With Errors

- ${\scriptstyle \bullet}$ LWE is more flexible \rightarrow good for constructions
- $\bullet\,$ LWE is parametrized by more parameters $\rightarrow\,$ harder to choose concrete parameters
 - m, n and q as for SIS
 - Distribution of error D_e
 - Distribution of secret D_s

I'm very much interested in understanding under what choices LWE "remains" a hard problem?

Example Parameters for Learning With Errors

- ${\scriptstyle \bullet}$ LWE is more flexible \rightarrow good for constructions
- LWE is parametrized by more parameters \rightarrow harder to choose concrete parameters
 - m, n and q as for SIS
 - Distribution of error D_e
 - Distribution of secret D_s

For simplicity, bounded uniform distribution with infinity norm bound δ .

n,m	q	δ	security bits
512	3329	3	118
768	3329	2	183
1024	3329	3	256

Part 3:

How to build encryption schemes

Reminder: Public-Key Encryption

A public-key encryption scheme $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- KGen \rightarrow (sk, pk)
- $\bullet \ \operatorname{Enc}(\operatorname{pk},m) \to \operatorname{ct}$
- $\bullet \ \operatorname{Dec}(\mathsf{sk},\mathsf{ct}) = m'$

Correctness: Dec(sk, Enc(pk, m)) = m during an honest execution

Security: $Enc(pk, m_0)$ is indistinguishable from $Enc(pk, m_1)$

Let χ be distribution on \mathbb{Z} .

- KGen:
 - $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\blacktriangleright \mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \mod q$
 - Output sk = s and pk = (A, b)

*Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Let χ be distribution on \mathbb{Z} .

• KGen:

- $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$
- $\blacktriangleright \mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
- Output sk = s and $pk = (\mathbf{A}, \mathbf{b})$

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Let χ be distribution on \mathbb{Z} .

- KGen:
 - $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\blacktriangleright \mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - $\blacktriangleright \text{ Output sk} = \mathbf{s} \text{ and } \mathsf{pk} = (\mathbf{A}, \mathbf{b})$

- Dec(sk, ct):
 - If $v \mathbf{us}$ is closer to 0 than to q/2, output m' = 0
 - Else output m' = 1

A

Α

,

 $|\mathbf{s}| + |\mathbf{e}| = |\mathbf{b}|$

m

*Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Katharina Boudgoust (CNRS, LIRMM)

Correctness:

$$v - \mathbf{us} = \mathbf{r}(\mathbf{As} + \mathbf{e}) + f' + \lfloor q/2 \rfloor \cdot m - (\mathbf{rA} + \mathbf{f})\mathbf{s}$$
$$= \underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\text{\mathbf{k} ciphertext noise}} + \lfloor q/2 \rfloor m$$

Decryption succeeds if |*| < q/8

^{*}Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

KGen: • $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$ Α , | \blacktriangleright **b** = **As** + **e** mod q • Output sk = s and pk = (A, b)• $Enc(pk, m \in \{0, 1\})$: • $\mathbf{r}, \mathbf{f} \leftarrow \chi^n$ and $f' \leftarrow \chi$ Α r b $\mathbf{v} = \mathbf{r}\mathbf{A} + \mathbf{f}$ • $v = \mathbf{rb} + f' + |q/2| \cdot m$ • Output $ct = (\mathbf{u}, v)$ * • Dec(sk, ct): • If $v - \mathbf{us}$ is closer to 0 than to q/2, output m' = 0

• Else output m' = 1

Semantic Security: Assume hardness of decision LWE

- 1. replace \mathbf{b} by uniform random vector
- 2. replace non-message part (*) by uniform random vector
- 3. then the message is completely hidden

*Regev, On lattices, learning with errors, random linear codes, and cryptography, STOC'05

Katharina Boudgoust (CNRS, LIRMM)

 $\mathbf{A} \quad \mathbf{s} + \mathbf{e} = \mathbf{b}$

m

Kyber - Standardized by NIST

rightharpoonup Kyber = the previous construction + several improvements

Main improvements:

- 1. Structured LWE variant (most important, more later)
- 2. LWE secret and noise from centered binomial distribution
- Pseudorandomness for distributions
- 4. Ciphertext compression

Sources:

- Website of Kyber: https://pq-crystals.org/kyber/ Kyber 1024: -256 Security bits -1ct | * |pic | & 1600 Bytes
- Latest specifications [link]

Y ĸ R. в

Kyber512 - M8 security bits - Ict | ~ lpk | ~ 800 Bytes

 $- \langle 0, \lambda \rangle$ ms

- < 0.2 ms

Part 4: What else you need to know

Recall: The Learning With Errors (LWE) Problem

 $\mathbb{Z}_q = \text{integers modulo } q$ $\mathbf{A} \sim \text{Unif}(\mathbb{Z}_q^{m \times n}), \mathbf{s} \sim \text{DistrS} \text{ and } \mathbf{e} \sim \text{DistrE}$

Given $(\mathbf{A}, \mathbf{As} + \mathbf{e} \mod q)$, find s

Recall: The Learning With Errors (LWE) Problem

 $\mathbb{Z}_q = \text{integers modulo } q$ $\mathbf{A} \sim \text{Unif}(\mathbb{Z}_q^{m \times n}), \mathbf{s} \sim \text{DistrS} \text{ and } \mathbf{e} \sim \text{DistrE}$

Given $(\mathbf{A}, \mathbf{As} + \mathbf{e} \mod q)$, find s

Improve efficiency by adding **structure**!

Improve efficiency by adding structure!

How? Replace \mathbb{Z} by $R = \mathbb{Z}[x]/(x^d + 1)$ for some d

Concrete Example **Q**

Consider d = 4, yielding $R = \mathbb{Z}[x]/(x^4 + 1)$

A Very low degree, **not** suited for real crypto schemes

Concrete Example **Q**

Consider d = 4, yielding $R = \mathbb{Z}[x]/(x^4 + 1)$

A Very low degree, **not** suited for real crypto schemes

Let $f = 3x^3 + 7x^2 - 4x + 5$ and $g = -x^3 - x^2 + 2x + 3$ be elements in R

+
$$f + g = 2x^3 + 6x^2 - 2x + 8$$

× $f \cdot g = -3x^6 - 10x^5 + 3x^4 + 22x^3 + 8x^2 - 2x + 15$ (use $x^4 + 1 = 0$)
 $= 22x^3 + (3 + 8)x^2 + (10 - 2)x + (-3 + 15)$
 $= 22x^3 + 11x^2 + 8x + 12$

Concrete Example **Q**

Consider d = 4, yielding $R = \mathbb{Z}[x]/(x^4 + 1)$

A Very low degree, **not** suited for real crypto schemes

Let $f = 3x^3 + 7x^2 - 4x + 5$ and $g = -x^3 - x^2 + 2x + 3$ be elements in R

+
$$f + g = 2x^3 + 6x^2 - 2x + 8$$

× $f \cdot g = -3x^6 - 10x^5 + 3x^4 + 22x^3 + 8x^2 - 2x + 15$ (use $x^4 + 1 = 0$)
 $= 22x^3 + (3 + 8)x^2 + (10 - 2)x + (-3 + 15)$
 $= 22x^3 + 11x^2 + 8x + 12$

Other way:

$$f \cdot g = \begin{bmatrix} 5 & -3 & -7 & 4 \\ -4 & 5 & -3 & -7 \\ 7 & -4 & 5 & -3 \\ 3 & 7 & -4 & 5 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 12 \\ 8 \\ 11 \\ 22 \end{bmatrix}$$

Module Learning With Errors (Module-LWE)

 \bigcirc Idea: sample **A** random over $R \Rightarrow$ structured over \mathbb{Z}

 $\mathbf{A} \sim \text{Unif}(R_q^{m \times \mathbf{h}}), \mathbf{s} \sim \text{DistrS}$ and $\mathbf{e} \sim \text{DistrE}$

Given $(\mathbf{A}, \mathbf{As} + \mathbf{e} \mod q)$, find s

- Before: LWE
- Kyber: Module-LWE with $R_q = \mathbb{Z}_q[x]/(x^d + 1)$, where d = 256 and q = 3329

Katharina Boudgoust (CNRS, LIRMM)

Beyond Encrypting Messages

- Same blueprint for FHE (fully homomorphic encryption)
 - But much larger modulus q (around 40-60 bits)
- Prone to side-channel attacks (like timing or leakage)
 - Hard to apply standard protection techniques
 - Ongoing project on modifying Kyber in a way that it's better protected against side-channel attacks
- Delicate to thresholdize
 - Smallness conditions provide security issues
 - So far: either have to pay in terms of efficiency or security

Wrap-Up

Hopefully you have now a rough idea:

- Part 1: What lattices are!
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What (my) particular challenges are!

Any questions or interested in my research?

🔹 🔽 Write me an e-mail

Wrap-Up

Hopefully you have now a rough idea:

- Part 1: What lattices are!
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What (my) particular challenges are!

Any questions or interested in my research?

🔹 🔽 Write me an e-mail

Thanks!

Miklós Ajtai.

Generating hard instances of lattice problems (extended abstract). In *STOC*, pages 99–108. ACM, 1996.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures from bilinear maps. In *EUROCRYPT*, volume 2656 of *Lecture Notes in Computer Science*, pages 416–432. Springer, 2003.

Whitfield Diffie and Martin E. Hellman. New directions in cryptography. *IEEE Trans. Inf. Theory*, 22(6):644–654, 1976.

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In *STOC*, pages 197–206. ACM, 2008.

Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography. In *STOC*, pages 84–93. ACM, 2005.