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Overview

! Questions we tried to answer last time:

What are lattices?

’Infinite, regular grids in high dimensions’

What are lattice problems?

SIS problem: searching for short vectors in specific & random lattices

What is lattice-based cryptography?

Collision-resistant hashing & signatures from SIS

What are some (of my) current challenges?

Aggregating lattice signatures

" Today:

Part 1: Reminder

Part 2: More lattice problems

Part 3: How to build encryption schemes

Part 4: What else you need to know
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Part 1:

Reminder
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Euclidean Lattices

Let B = (bi)i=1,...,n be a set of linearly independent vectors, defining the lattice

!(B) =

{
n∑

i=1

zibi : zi → Z
}
.
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Short Integer Solution [Ajt96]ω

Given a matrix A → Zm→n
q sampled uniformly at

random and bound ε > 0.

The short integer solution (SIS) problem asks
to find a vector z → Zm of norm 0 < ↑z↑2 ↓ ε

such that
AT z = 0 mod q.

Recall:

!↑
q (A) =

{
y → Zm : ATy = 0 mod q

}

ATn

m

z m

1

= 0

# Solving SIS equals finding a short vector in the specific & random lattice !↑
q (A)

ωAjtai, Generating hard instances of lattice problems, STOC’96
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p
makes it a hard problem



Part 2:

More lattice problems
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Bounded Distance Decoding

Given a lattice ! and a target t such that

dist(!, t) ↓ ϑ.

The bounded distance decoding (BDD)
problem asks to find the unique vector w → !
such that

↑w ↔ t↑2 ↓ ϑ.

The complexity of BDD increases with the
lattice dimension and promised radius ϑ.

Conjecture:

There is no polynomial-time classical or

quantum algorithm that solves BDD for all

lattices to within polynomial factors.

b1b2

t ω

w
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But BDD might be easy
for some lattices
For instance In rounding

to nearest integer

Again restrict to

specif random
lattices



More specific classes of lattices

Last time: !↑
q (A) =

{
y → Zm : ATy = 0 mod q

}

This time: !q(A) = {y → Zm : y = As mod q for some s → Zn}

A over Zqy =m

n

s
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Learning With Errors [Reg05]ω

Given a matrix A → Zm→n
q sampled uniformly at

random.

Given a vector b → Zm
q , where b = As+ e mod q for

secret s → Zn
q sampled from distribution Ds and

noise/error e → Zm sampled from distribution
De such that ↑e↑2 ↓ ϑ ↗ q.

Search learning with errors (S-LWE) asks to find s.

Decision learning with errors (D-LWE) asks to
distinguish (A,b) from the uniform distribution over
Zm→n
q ↘ Zm

q .

! The present noise makes S-LWE a hard problem.

! The norm restriction on e makes D-LWE a hard
problem!

A , A

s

+ em

n

↑ uniform

↓ find s

# S-LWE equals BDD in the specific & random lattice !q(A).

ωRegev, On lattices, learning with errors, random linear codes, and cryptography, STOC’05
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Connection between LWE and SIS

# If there is an e!cient solver for SIS, then there is an e!cient solver for D-LWE.

Proof.

Given (A,b), our goal is to decide whether
1) b = As+ e for short error e or 2) b ↔ Unif(Zm

q ).

Forward A to SIS-solver and receive back z such that AT z = 0 mod q and z short.

Compute
∥∥bT z

∥∥. If the norm is ↗ q, claim that we are in case 1). Else, claim that we
are in case 2).

Case 1) b = As+ e, thus bT z = sTAT z+ eT z = eT z mod q. Thus∥∥bT z
∥∥ ↘ ≃e≃ · ≃z≃ ↗ q.

Case 2) b uniform, so is bT z and hence
∥∥bT z

∥∥ is not particularly small with high
chances.
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Example Parameters for Learning With Errors

LWE is more flexible ↓ good for constructions

LWE is parametrized by more parameters ↓ harder to choose concrete parameters
↭ m,n and q as for SIS
↭ Distribution of error De
↭ Distribution of secret Ds

For simplicity, bounded uniform distribution with infinity norm bound ω.

n,m q ω security bits

512 3329 3 118
768 3329 2 183
1024 3329 3 256

Katharina Boudgoust (CNRS, LIRMM) Lattice-Based Cryptography 12th June 2025, Flashbots Seminar 11 / 22

I'm very much interested in understanding

under what choices WE remains

a hard problem
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Part 3:

How to build encryption schemes
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Reminder: Public-Key Encryption

A public-key encryption scheme ” = (KGen,Enc,Dec) consists of three algorithms:

KGen ↓ (sk, pk)

Enc(pk,m) ↓ ct

Dec(sk, ct) = m↓

Correctness: Dec(sk,Enc(pk,m)) = m during an honest execution

Security: Enc(pk,m0) is indistinguishable from Enc(pk,m1)
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Public-Key Encryption from LWE [Reg05]ω

Let ε be distribution on Z.

KGen:
↭ A ≃ Unif(Zn→n

q ) and s, e ≃ ϖ
n

↭ b = As+ e mod q

↭ Output sk = s and pk = (A,b)

Enc(pk,m → {0, 1}):
↭ r, f ≃ ϖ

n and f
↓ ≃ ϖ

↭ u = rA+ f
↭ v = rb+ f

↓ + ⇐q/2⇒ ·m
↭ Output ct = (u, v)

Dec(sk, ct):
↭ If v ↔ us is closer to 0 than to q/2, output m↓ = 0
↭ Else output m↓ = 1

A , A s + e = b

r A b + f f ↓ + m

⇐

ωRegev, On lattices, learning with errors, random linear codes, and cryptography, STOC’05
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↭ Else output m↓ = 1

Correctness:

v ↔ us = r(As+ e) + f
↓ + ⇐q/2⇒ ·m↔ (rA+ f)s

= re+ f
↓ ↔ fs+ ⇐q/2⇒m

Decryption succeeds if |⇑| < q/8

A , A s + e = b

r A b + f f ↓ + m

⇐ ciphertext noise

⇐
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↭ Output ct = (u, v)

Dec(sk, ct):
↭ If v ↔ us is closer to 0 than to q/2, output m↓ = 0
↭ Else output m↓ = 1

Semantic Security: Assume hardness of decision LWE

1. replace b by uniform random vector

2. replace non-message part (⇐) by uniform random vector

3. then the message is completely hidden

A , A s + e = b

r A b + f f ↓ + m

⇐
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Kyber - Standardized by NIST

# Kyber = the previous construction + several improvements

Main improvements:

1. Structured LWE variant (most important, more later)

2. LWE secret and noise from centered binomial distribution

3. Pseudorandomness for distributions

4. Ciphertext compression

Sources:

Website of Kyber: https://pq-crystals.org/kyber/

Latest specifications [link]

Katharina Boudgoust (CNRS, LIRMM) Lattice-Based Cryptography 12th June 2025, Flashbots Seminar 15 / 22

Kyber512
118 securitybits
Ict Ipk 800Bytes
0.1 ms

2
Kyber1024
256securitybits
Ict pk 1600Bytes
40.2ms

https://pq-crystals.org/kyber/
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf


Part 4:

What else you need to know
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Recall: The Learning With Errors (LWE) Problem

Zq = integers modulo q

A ⇓ Unif(Zm→n
q ), s ⇓ DistrS and e ⇓ DistrE

A , A

s

+ e mod qm

n

1000 →

→ 500

→ 215

Given (A,As+ e mod q), find s

! Storage m(n+ 1) log2 q bits
! Computation O(mn) operations over Zq
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Idea $

Improve e!ciency by adding structure!

Computation Storage

How? Replace Z by R = Z[x]/(xd + 1) for some d
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Concrete Example "

Consider d = 4, yielding R = Z[x]/(x4 + 1)

! Very low degree, not suited for real crypto schemes

Let f = 3x3 + 7x2 ↔ 4x+ 5 and g = ↔x
3 ↔ x

2 + 2x+ 3 be elements in R

+ f + g = 2x3 + 6x2 ↔ 2x+ 8
% f · g = ↔3x6 ↔ 10x5 + 3x4 + 22x3 + 8x2 ↔ 2x+ 15 (use x

4 + 1 = 0)
= 22x3 + (3 + 8)x2 + (10↔ 2)x+ (↔3 + 15)
= 22x3 + 11x2 + 8x+ 12

Other way:

f · g =





5 ↔3 ↔7 4
↔4 5 ↔3 ↔7
7 ↔4 5 ↔3
3 7 ↔4 5



 ·





3
2
↔1
↔1



 =





12
8
11
22




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! Very low degree, not suited for real crypto schemes

Let f = 3x3 + 7x2 ↔ 4x+ 5 and g = ↔x
3 ↔ x

2 + 2x+ 3 be elements in R

+ f + g = 2x3 + 6x2 ↔ 2x+ 8
% f · g = ↔3x6 ↔ 10x5 + 3x4 + 22x3 + 8x2 ↔ 2x+ 15 (use x

4 + 1 = 0)
= 22x3 + (3 + 8)x2 + (10↔ 2)x+ (↔3 + 15)
= 22x3 + 11x2 + 8x+ 12

Other way:

f · g =





5 ↔3 ↔7 4
↔4 5 ↔3 ↔7
7 ↔4 5 ↔3
3 7 ↔4 5



 ·





3
2
↔1
↔1



 =





12
8
11
22




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Module Learning With Errors (Module-LWE)

$ Idea: sample A random over R ⇔ structured over Z

A ⇓ Unif(Rm→r
q ), s ⇓ DistrS and e ⇓ DistrE

A , A

s

+ e mod q.m

r

a11

Given (A,As+ e mod q), find s

Before: LWE

Kyber: Module-LWE with Rq = Zq [x]/(xd + 1), where d = 256 and q = 3329

over R
over Z
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h

n

very popular choice nowadays



Beyond Encrypting Messages

Same blueprint for FHE (fully homomorphic encryption)

↭ But much larger modulus q (around 40-60 bits)

Prone to side-channel attacks (like timing or leakage)

↭ Hard to apply standard protection techniques

↭ Ongoing project on modifying Kyber in a way that it’s better protected against
side-channel attacks

Delicate to thresholdize

↭ Smallness conditions provide security issues

↭ So far: either have to pay in terms of e!ciency or security
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Wrap-Up

" Hopefully you have now a rough idea:

Part 1: What lattices are!

Part 2: What lattice problems are!

Part 3: What lattice-based cryptography is!

Part 4: What (my) particular challenges are!

Any questions or interested in my research?

○ Write me an e-mail

Thanks!
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