

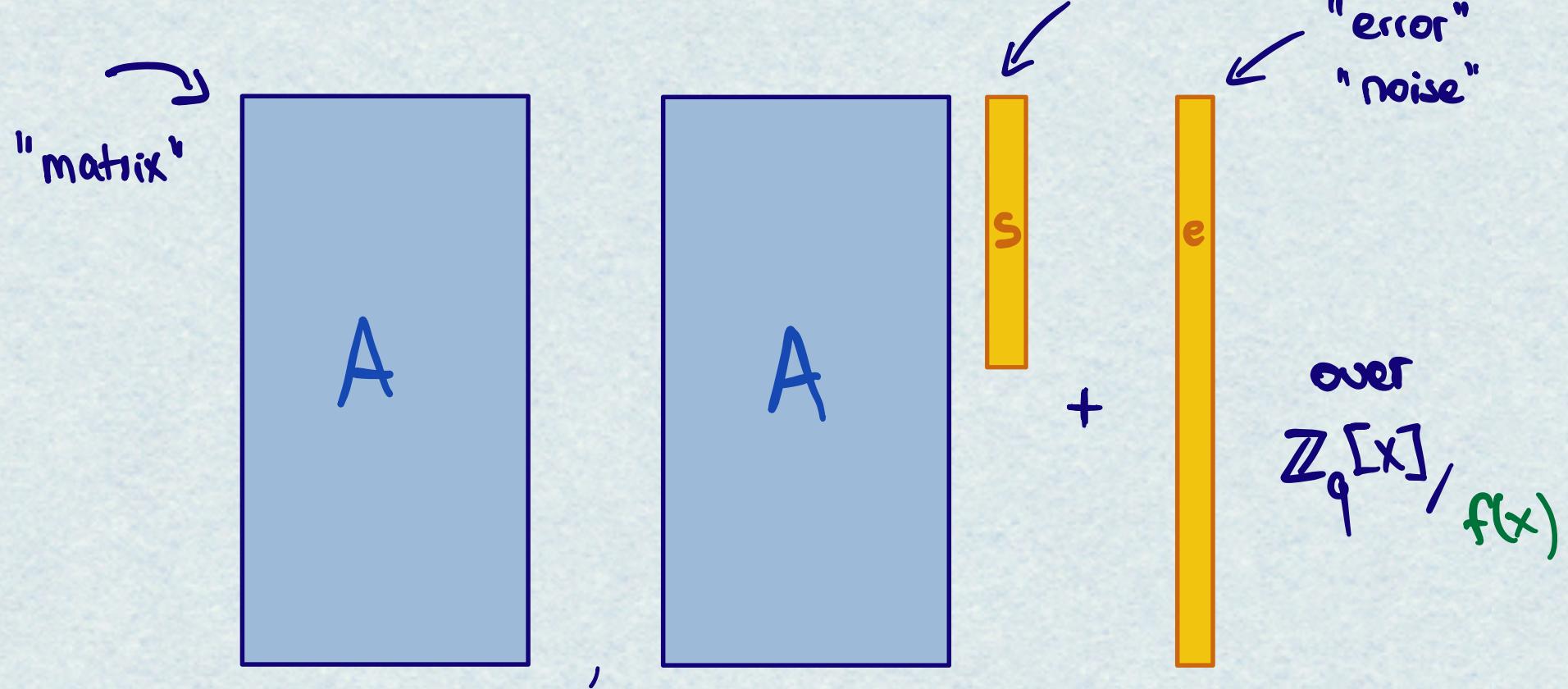
Module Learning with Errors with non-uniform matrices

Joint Online Crypto Seminar - 12 January 2026

Katharina Boudgoust, joint work with Hannah Keller
@ Aarhus Crypto

Module Learning With Errors

Langlois, Stéphane DCC'15

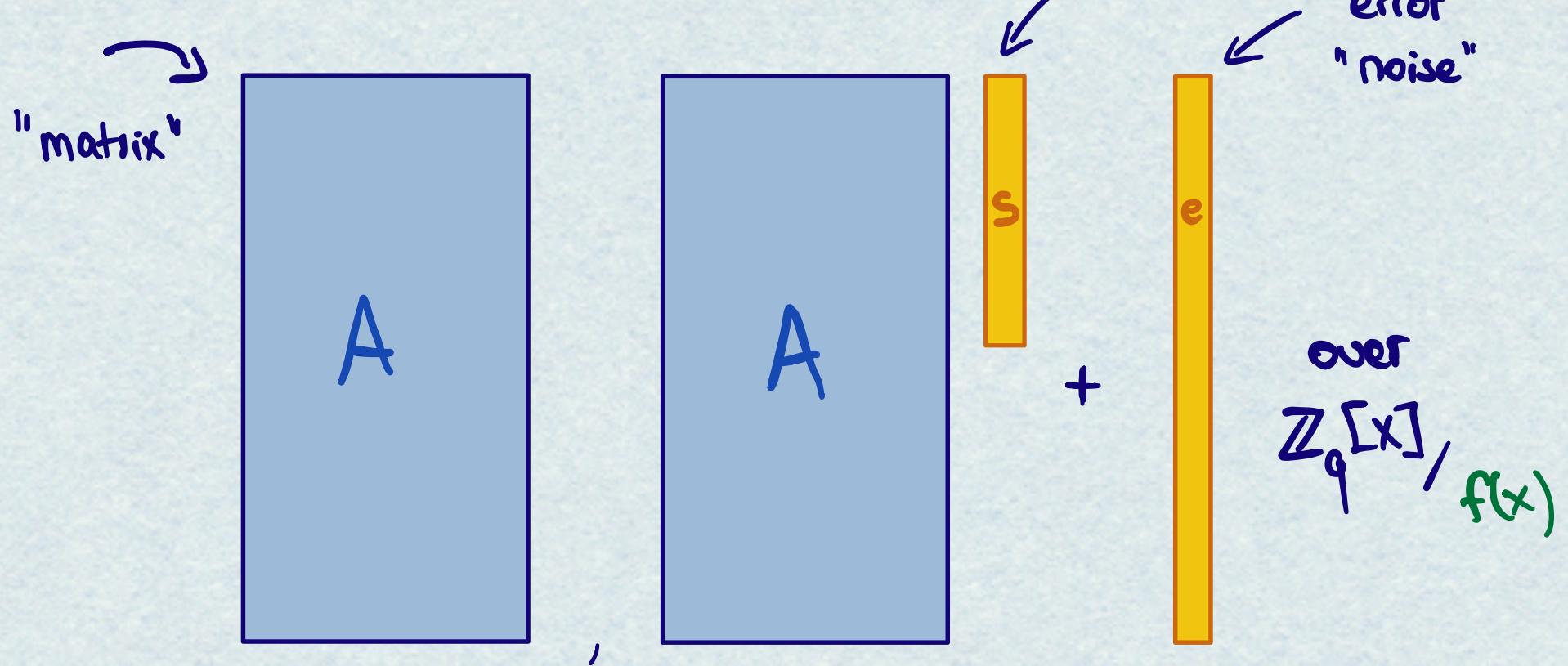


Search: find s (or e)

decision: distinguish from (A, unif)

Module Learning With Errors

Langlois, Stehlé DCC'15



Choices:

- * polynomial $f(x)$
- * distribution for s
- * distribution for e
- * distribution for A

}

flexible usage
but
non-trivial security
analysis

Standard Module Learning With Errors

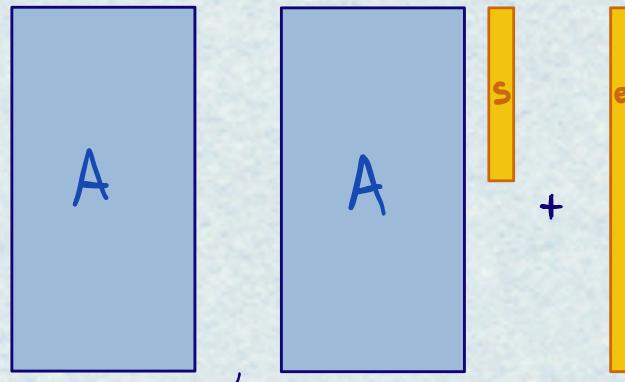
Langlois, Stehlé DCC'15

Shortest Independent Vector Problem
for ANY module lattices

quantum: Langlois, Stehlé DCC'15

classical: Boudgoust, Jeudy, Roux-Langlois, Wen Asiacrypt'20

- * $f(x)$ cyclotomic polynomial
- * s uniform over $\mathbb{Z}_q[x]/f(x)$
- * e discrete Gaussian
- * A uniform over $\mathbb{Z}_q[x]/f(x)$



Variants

Module Learning With Errors in Hermite Normal Form

Applebaum, Cash, Peikert, Sahai Crypto'09

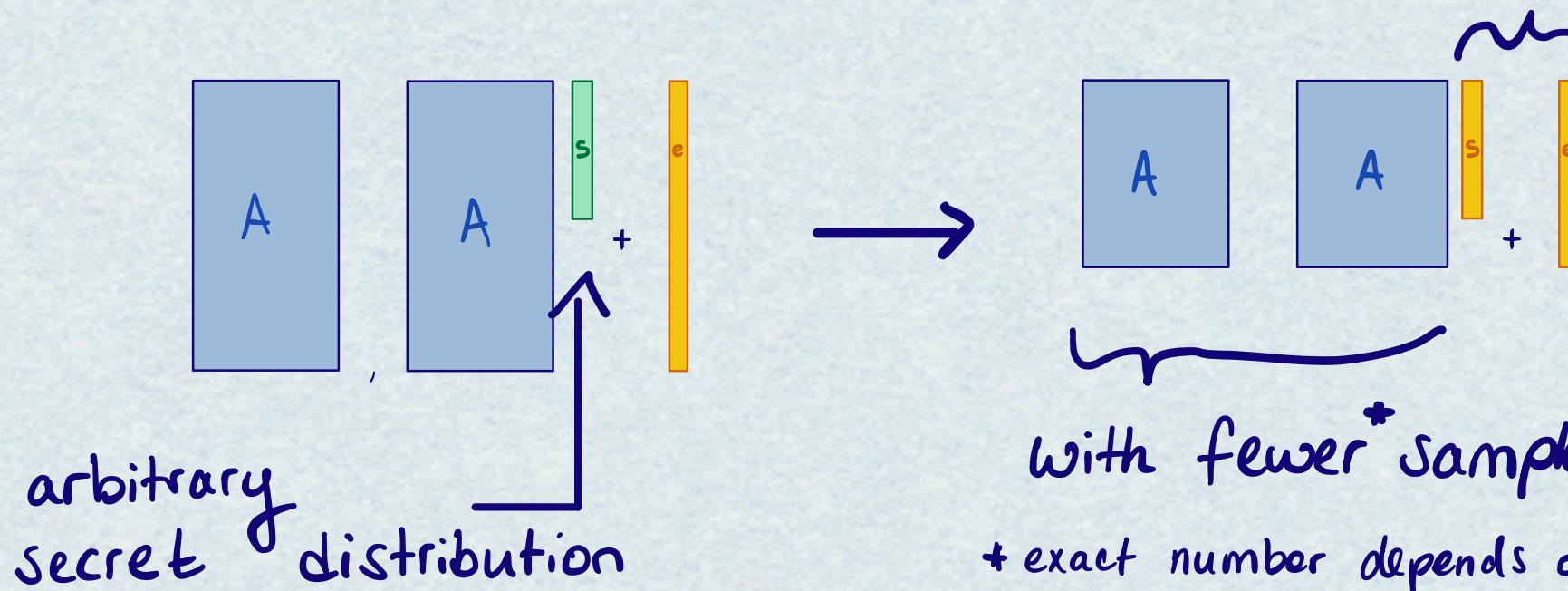
s and e follow the same
distribution

(both are short)

Module Learning With Errors in Hermite Normal Form

Applebaum, Cash, Peikert, Sahai Crypto'09

Same than
noise distribution



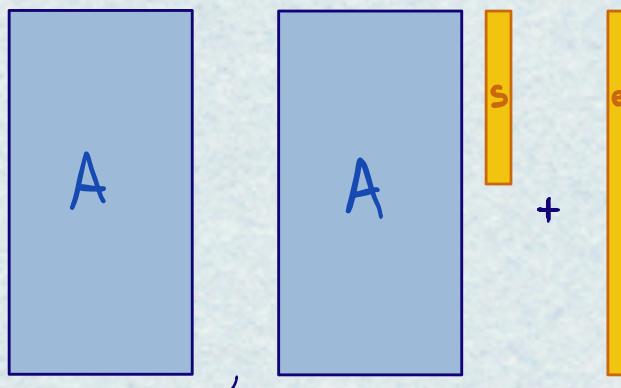
with fewer* samples

* exact number depends on the underlying ring $\mathbb{Z}_q[x]/f(x)$

* Present in most practical schemes

* Used in the Lattice Estimator

Module Learning With Errors : Variants



* polynomial $f(x)$: for now, all cyclotomics seem equally secure, but reductions are missing !

* distribution s : any, as long as enough min-entropy

Brakerski, Döttling TCC'20
Boudgoust, Jeudy, Roux-Langlois, Wen Indocrypt'22
Lin, Wang, Zhuang, Wang TCS'24

* distribution e : $\| \cdot \|$ and bounded norm

Boudgoust, Jeudy, Tairi, Wen Eprint 2025/1472

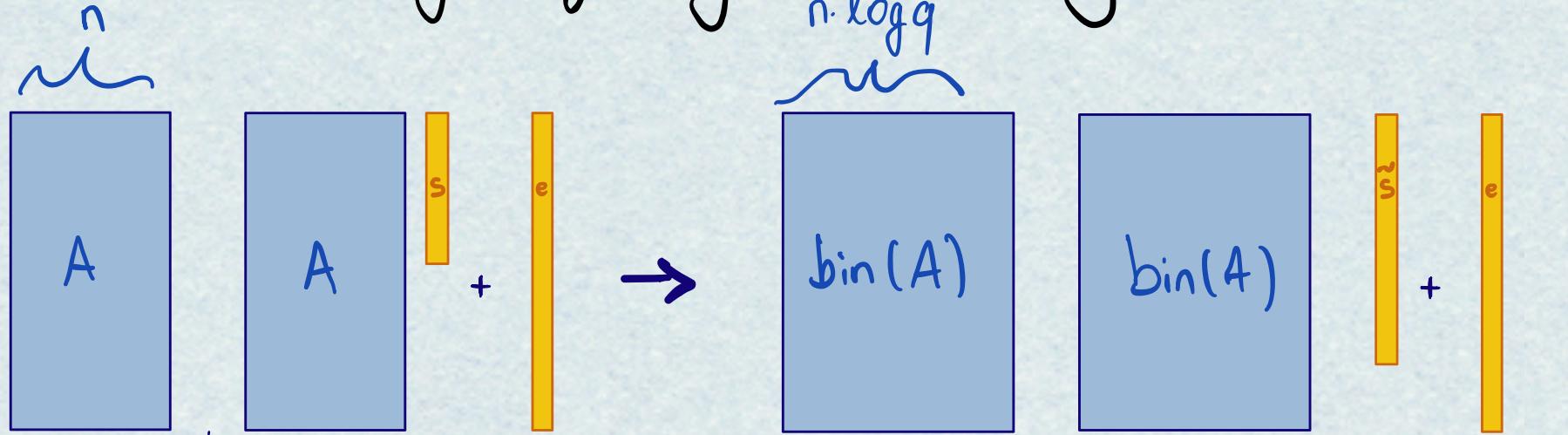
Often tighter reductions for specific distributions

What about non-uniform
matrices A ?

Some results...

~~Module~~ Learning With Errors with binary matrix

Boneh, Lewi, Montgomery, Raghunathan (Crypto'13)

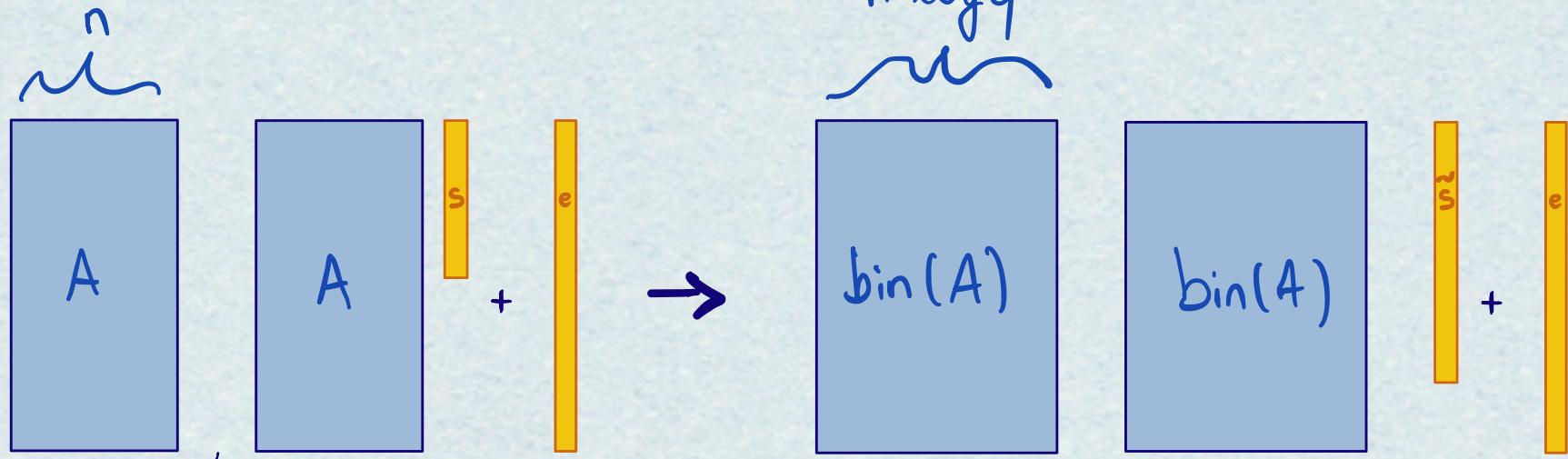


over \mathbb{Z}_q

$$\tilde{s} = \begin{pmatrix} 1 \\ 2 \\ \vdots \\ 2^{\log q} \\ & 1 \\ & 2 \\ & \vdots \\ & 2^{\log q} \\ & \ddots \\ & 1 \\ & 2 \\ & \vdots \\ & 2^{\log q} \end{pmatrix} \cdot s$$

"gadget" matrix

~~Module~~ Learning with Errors with binary matrix



\tilde{s} is large now

Actually, A , s and e can not all three
be small at the same time

("Integer LWE" easy to solve)

Module Learning With Errors with

- * A computationally close to uniform

Goldwasser, Kalai, Peikert, Vaikuntanathan ICS'10

$$\begin{array}{c} \text{blue box} \\ = \\ \text{yellow box} \cdot \text{purple box} \\ + \\ \text{green box} \end{array} \quad \left. \begin{array}{l} \text{std multi-secret} \\ \text{M-LWE} \\ \text{instance} \end{array} \right\}$$

- * A statistically / Rényi close to uniform using the Leftover Hash Lemma

Regen STOC'05

Bai, Lepoint, Rour-Langlois, Sakzad, Stehlé, Steinfeld

JOC'18

- * A sparse matrix

Jain, Lin, Saha Crypto'24

In our work:

for power-of-2 cyclotomics

truncate the c low-order bits of A

U uniform over $\mathbb{Z}_q[x]$,
 $f(x)$

$$A = \text{Trunc}(U, c) = U - (U \bmod 2^c)$$

$$\Rightarrow A \equiv 0 \pmod{2^c}$$

c low-order
bits of U

trivial setup:

2^c divides q
and $\|e\| < 2^c$

$$\Rightarrow Aste \bmod 2^c = e$$

Why looking at this variant? pk-compression

In PKE:

$$pk = \text{Trunc}(A, A_s + e) = A'$$

$$ct = A' \cdot r + f + \text{encoded(msg)}$$

A' is truncated

security argument based on truncated LWE

(was proposed for Kyber, then discarded)

* an alternative solution:

add random low-order bits (in the ROM)

Research Goal:

Reduce hardness of

truncated μ -LWE

from

Standard μ -LWE

$$A = \text{Trunc}(U, c) = U - N_U \}$$

Approach 1

$$(A, A_s + e) \rightsquigarrow (U, U_s + e - N_{U_s}) \approx e'$$

use noise flooding to argue

$$e - N_{U_s} \approx e' \text{ fresh noise}$$

Statistical : Super-poly $e \Rightarrow$ Super-poly q

Rényi divergence: poly e and q , but only search ^{in the} papers

$$A = \text{Trunc}(U, c) = U - N_U \}$$

Approach 1

$$(A, A_s + e) \rightsquigarrow (U, U_s + e - N_{U_s}) \approx e'$$

use noise flooding to argue
 $e - N_{U_s} \approx e'$ fresh noise

+ Rényi noise flooding applies to many distributions

+ $\|e\| \gg \|N_U\| \cdot \|s\| \approx 2^c$ \rightsquigarrow disallows trivial setup

- not for decision: large distance between U and A
(yet)

What about hardness

of decision

truncated MLLWE?

$$A = \text{Trunc}(U, c) = U - N_U \}$$

Approach 2 via M-LWE with hints on S

$$(A, A_{\text{ste}}, H, Hs + f)$$

$$\approx (A, \text{Unif}, H, Hs + f)$$

HDF M-LWE
with Gaussians

Bermudo Mesa, Karmakar, Marc, Soleimanian

PKC'22

f noise

$\|H\|$ bounded

\leftarrow adversarially chosen
depending on A

\Rightarrow M-LWE with hints on S

M-LWE with truncated A

$$A = \text{Trunc}(U, c) = U - N_u \}$$

Approach 2

M-LWE with hints on S

M-LWE with truncated A

$$(U, U_s + e_1, -N_u, -N_u + e_2) \rightsquigarrow (A, A_s + e)$$

Hint on secret S

$$c = e_1 + e_2$$

Gaussian

Composition

Zoom out

Work	Assumption	Variant	Distr. s	Distr. e
Jia, Zhang, Wang IET '23	Module NTRU	Search	any, enough min-entropy	Gaussian
Approach 1)	Module LWE	Search	Bounded	Rényi- close
Approach 2)	Module LWE	Decision	Gaussian	Gaussian

Open Questions:

- * decision hardness for non-Gaussians
- * additive and multiplicative transformations

Zoom out

Thanks !

Work	Assumption	Variant	Distr. S	Distr. e
Jia, Zhang, Wang IET '23	Module NTRU	Search	any, enough min-entropy	Gaussian
Approach 1)	Module LWE	Search	Bounded	Rényi- close
Approach 2)	Module LWE	Decision	Gaussian	Gaussian

Open Questions :

ia.cr/2023/420

- * decision hardness for non-Gaussians
- * additive and multiplicative transformations