Exercises Extra

Note: These exercises are exemplary for the ones appearing in the final exam.

Exercise 1. We consider the group $(G, \cdot, 1)$, where $G = (\mathbb{Z}/25\mathbb{Z})^{\times}$.

- *i.* What is the order ord(G) of the group? List its elements.
- ii. Compute the inverse of 13 in the group.
- *iii.* Compute (by hand!) 2^{2777} in the group.
- *iv.* Compute the subgroup $\langle 6 \rangle$ generated by 7.

Exercise 2. We define the following squared exponent problem: Let g be a generator of a cyclic group G and let t be sampled uniformly at random from $\{0, \ldots, \text{ord}(G) - 1\}$. Given (g, g^t, g^{t^2}) , the problem asks to find t.

Prove that there exists a reduction from the squared exponent problem to the computational Diffie-Hellman (CDH) problem, introduced in class. In other words, prove that an adversary having non-negligible success probability in solving CDH leads to an adversary having non-negligible success probability in solving the squared exponent problem.

Exercise 3. Let $\Pi = (Gen, Enc, Dec)$ be a correct and secure symmetric encryption scheme. We build the following *key-exchange protocol:*

Alice samples an ephemeral key $m_A \leftarrow$ Gen and sends it to Bob. Bob samples the key k_B and encrypts it under the symmetric encryption scheme using m_A as the key, i.e., $m_B \leftarrow Enc(k_B, m_A)$, and sends m_B to Alice. Alice computes $k_A \leftarrow Dec(m_B, m_A)$.

- *i.* Prove that the scheme above is a correct key-exchange protocol.
- *ii.* Prove that it is not secure (against an eavesdropper).

Exercise 4 (Bonus). Let $N = 41 \cdot 47$ and e = 3. Let us take the pair (N, e) as a public key of the RSA signature scheme. Find the corresponding private key.