Reductions

Exercise 1. *RSA to Factoring*

1. Show (formally) that the problem RSA reduces to the factoring problem, both introduced in the second lecture. In other words, show that if there exists an algorithm A which solves the factoring problem with non-negligible probability, one can construct an algorithm β which solves the RSA problem with non-negligible probability.

Hint: Think about what information you need to solve RSA. The extended Euclidean algorithm applied to e and φ (N) might be of use.

Solution: Recall the definition of the **factoring problem**: Let *p*, *q* be two random distinct primes, defining the *λ*-bit integer *N*. Given as input *N*, the problem asks to find *p* and *q*.

Recall the definition of the **RSA problem**: Let p, q be two random distinct primes, defining the λ -bit integer *N*. Let φ be Euler's totient function. Further, sample $e \leftarrow (\mathbb{Z}/\varphi(N)\mathbb{Z})^\times$ and sample $y \leftarrow (\mathbb{Z}/N\mathbb{Z})^\times$. Given as input (N, e, y) , the problem asks to find *x* such that $x^e = y \text{ mod } N$.

I Description: Let A be a PPT algorithm solving the factoring problem with probability $>$ negl(λ). Our goal is to construct a PPT algorithm B solving the RSA problem with probability $>$ negl(λ).

Let (N, e, y) be the input given to B. The algorithm B takes N and gives it as input to A. Let p, q be the output of A. The algorithm B first verifies if $N = pq$ (that means, A was successful). Then, they compute $\varphi(N) = (p-1)(q-1)$ (the formula has been shown in previous exercises). Now, the algorithm β can use the extended Euclidean algorithm (learned in previous lectures) to compute $d \in (\mathbb{Z}/\varphi(N)\mathbb{Z})^\times$ such that $e \cdot d = 1$ mod $\varphi(N)$. The algorithm B then computes $x = y^d$ mod N and outputs x as their solution.

II Analysis: We first check that the view of A has the correct form. Their view only consists of the number *N* given as input. The *N* provided to A by B has the correct form as it is the same in the factoring problem and in the RSA problem.

Now, we check that the output of β is a solution to the RSA problem. Indeed, it holds

$$
x^e = (y^d)^e = y^{de} = y^{de \bmod{\varphi(N)}} = y \bmod{N}.
$$

Here, we used the properties of the group $(\mathbb{Z}/N\mathbb{Z})^{\times}$ of order $\varphi(N)$. Finally, we observe that computing $\varphi(N)$ and *d* can be done in polynomial time. Overall β is PPT as long as $\mathcal A$ is PPT. And

 $Pr[\mathcal{B}$ wins the RSA game] > $Pr[\mathcal{A}$ wins the factoring game] > negl(λ).

This concludes the reduction.

1. Show (formally) that the problem CDH reduces to the DLog problem, both introduced in the first lecture. In other words, show that if there exists an algorithm A which solves the DLog problem with non-negligible probability, one can construct an algorithm β which solves the CDH problem with non-negligible probability.

Solution: Recall the definition of the **DLog problem**: Let *G* be a cyclic group with *g* a generator and *λ*-bit order ord(*G*). Sample $t \leftarrow \{0,\ldots,$ ord(*G*) − 1} and compute $h = g^t \in G$. Given as input (*G*, *g*, *h*), find *t*.

Recall the definition of the **CDH problem**: Let *G* be a cyclic group with *g* a generator and *λ*-bit order ord(*G*). Sample $t_1, t_2 \leftarrow \{0, \ldots, \text{ord}(G) - 1\}$ (identically distributed, but independent) and compute $h_1 =$ *g*^{*t*₁} and *h*₂ = *g*^{*t*₂} in *G*. Given as input (*G*, *g*, *h*₁, *h*₂), find *h* = *g*^{*t*₁*t*₂} \in *G*.

I Description: Let A be a PPT algorithm solving the DLog problem with probability $>$ negl(λ). Our goal is to construct a PPT algorithm B solving the CDH problem with probability $>$ negl(λ).

Let (G, g, h_1, h_2) be the input given to B. The algorithm B takes (G, g, h_1) and gives it as input to A. Let t_1 be the output of A. The algorithm B does make use of A a second time, by taking (G, g, h_2) and giving it as input to A. Let t_2 be the second output of A. The algorithm B first verifies if $h_1 = g^{t_1}$ and $h_2 = g^{t_2}$ (that means, A was successful in both cases). Then, they compute $h = g^{t_1t_2}$ and output h as their solution.

II Analysis: We first check that the view of A has the correct form. Their view consists of the triplets (G, g, h_1) and (G, g, h_2) given as input. Both triplets have the correct form as the choice of *G* and *g* are the same in the DLog problem and in the CDH problem. Moreover h_1 and h_2 are computed by choosing random elements t_1 and t_2 from the correct set.

Now, we check that the output of B is a solution to the CDH problem. Indeed, it holds $h = g^{t_1t_2}$ where $h_1 = g^{t_1}$ and $h_2 = g^{t_2}$. Finally, we observe that computing *h* can be done in polynomial time. Overall *B* is PPT as long as A is PPT. And

 $Pr[\mathcal{B}$ wins the CDH game] > $Pr[\mathcal{A}$ wins the DLog game] > $negl(\lambda)$.

This concludes the reduction.