Exercises I

Note: We discuss solutions to the exercises together in the class on the 18th November 2024.

Exercise 1.

- **1.** We consider the group $(G, \cdot, 1)$, where $G = (\mathbb{Z}/21\mathbb{Z})^{\times}$.
 - i. What is the order ord(G) of the group? List its elements.
 - ii. Compute the inverse of 11 in the group.
 - iii. Compute (by hand!) 2^{2403} in the group.
 - iv. Compute the subgroup $\langle 7 \rangle$ generated by 7.
- **2.** We consider the group $(G, \cdot, 1)$, where $G = (\mathbb{Z}/23\mathbb{Z})^{\times}$.
 - i. What is the order ord(G) of the group? List its elements.
 - ii. Compute the subgroup $\langle 2 \rangle$ generated by 2.
 - iii. Compute the subgroup $\langle 5 \rangle$ generated by 5.

Hint: Recall that for any group $(G, \cdot, 1)$, it holds $x^{\text{ord}(G)} = 1$ for every $x \in G$.

Exercise 2.

Non-secure key exchange

- 1. We consider the following key-exchange protocol between Alice and Bob.
 - 1. Alice samples uniformly at random k_A and r from $\{0,1\}^n$. They then send $s = k_A \oplus r$ to Bob.
 - 2. Bob samples uniformly at random *t* from $\{0, 1\}^n$ and sends $u = s \oplus t$ to Alice.
 - 3. Alice computes $w = u \oplus r$ and sends w to Bob.
 - 4. Bob computes $k_B = w \oplus t$.
 - i. Show that Alice and Bob share the same key, namely $k_A = k_B$.
 - ii. Show that the protocol is not secure against an eavesdropping Eve!

Hint: Look at the set of messages sent between Alice and Bob and show that they contain enough information to compute the key.

Finite groups