Exercises II

Note: We discuss solutions to the exercises together in the class on the 10th December 2025.

Exercise 1.

Properties of Shamir's Secret Sharing

Let us consider the Shamir secret sharing scheme introduced during the lecture. In this exercise, we want to prove that it is *linear*. That means, if a party owns a share of two different values α and α' , the sum of the two shares provide a valid share of the sum $\alpha + \alpha'$.

1. Show that for every $\alpha, \alpha' \in \mathbb{Z}/q\mathbb{Z}$, for every valid reconstruction set $S \subset \{1, ..., N\}$ with |S| = t, it holds

$$\Pr_{\substack{\mathsf{Share}(\alpha) \to (s_1, \dots, s_N) \\ \mathsf{Share}(\alpha') \to (s'_1, \dots, s'_N)}} \left[\mathsf{Reconstruct}((s_i + s'_i)_{i \in S}) = \alpha + \alpha' \right] = 1,$$

where Share and Reconstruct refer to the Shamir's secret sharing algorithms.

Hint: You can use the correctness property proven during the lecture.

Interestingly, under some careful parameter constraints, Shamir's secret sharing is even *multiplicative*. We'll go through it together.

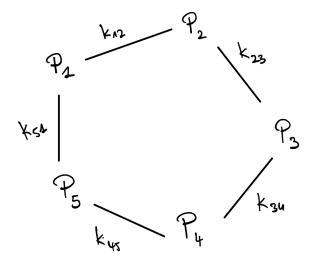
- **2.** Let's start with a concrete example, considering N=6, t=2, q=17 and $\alpha=1, \alpha'=2$. Provide an execution of the Share algorithm from Shamir's secret sharing to compute some exemplary w(x) and w'(x) and shares s_1, \ldots, s_N and s'_1, \ldots, s'_N . Compute their product $(w \cdot w')(x)$ and prove that $w \cdot w'$ evaluated at 0 gives $\alpha \cdot \alpha'=2$.
- 3. Let w(x) be a polynomial in $\mathbb{Z}/q\mathbb{Z}[x]$ of degree at most d and w'(x) be a polynomial in $\mathbb{Z}/q\mathbb{Z}[x]$ of degree at most d'. What is the largest degree their sum (w+w')(x) can have? And how about their product $(w \cdot w')(x)$?
- **4.** Back to our concrete example from Item 2. For $S = \{1, 2, 3\}$, show that $(s_i \cdot s_i')_{i \in S}$ provide enough information to reconstruct $\alpha \cdot \alpha' = 2$.
- 5. We can know prove the following general result. Assume that $(s_1, \ldots, s_N) \leftarrow \operatorname{Share}(\alpha)$ is a t-out-of-N secret sharing of α and $(s'_1, \ldots, s'_N) \leftarrow \operatorname{Share}(\alpha')$ a t-out-of-N secret sharing of α' . And that each party i knows s_i and s'_i . Prove that every set $S \subset \{1, \ldots, N\}$ with |S| = 2t 1 is a valid reconstruction set. More concretely, prove that knowing $(s_i \cdot s'_i)_{i \in S}$ suffices to reconstruct $\alpha \cdot \alpha'$.

Exercise 2. Pseudo-Random Zero-Sharing

Let us consider the example of a pseudo-random secret sharing for N=5 parties, where

- Party 1 gets $k_1 = (k_{12}, k_{51})$
- Party 2 gets $k_2 = (k_{12}, k_{23})$
- ...
- Party 5 gets $k_5 = (k_{45}, k_{51})$

And for a given input x (for instance a time stamp with access to a common clock), every Party i computes their share s_i as $s_i = F(k_i[0], x) \oplus F(k_i[1], x)$, where F is a pseudo-random function and $k_i = (k_i[0], k_i[1])$ is the partie's key. For every set $S \subset \{1, \ldots, N\}$, the Reconstruction algorithm is given by $\bigoplus_{i \in S} s_i$.



1. Prove that the scheme is correct only for the set $\{1, ..., N\}$. In other words, all parties are required for the reconstruction of the zero value.

Hint: Show that reconstruction works for the set $\{1, ..., N\}$, but does not work for any strict subset of it.

- **2.** Prove that security is guaranteed for subsets of size one.
- **3.** Prove that security is *not* guaranteed for subsets of size two.

Hint: It's enough to provide one counter example.

Note: Reference for further reading: *Compressing Cryptographic Resources* by Niv Gilboa and Yuval Ishai, Crypto'1999.