Properties of Replicated Secret Sharing

Exercises III

Note: We discuss solutions to the exercises together in the class on the 11th December 2025.

There we discuss solutions to the exercises together in the class on the 11th 2 cccinet 2029

Let us consider the replicated secret sharing (RSS) scheme introduced during the lecture.

- **1.** Make a concrete execution of the Share algorithm of RSS over $\mathbb{Z}/q\mathbb{Z}$ for N=4, t=2 and q=17 and $\alpha=5$.
- **2.** Now, reconstruct using the set $S = \{2, 4\}$.
- 3. As for Shamir's secret sharing scheme, the replicated secret sharing scheme is *linear*. Show that for every $\alpha, \alpha' \in \mathbb{Z}/q\mathbb{Z}$, for every valid reconstruction set $S \subset \{1, ..., N\}$ with |S| = t, it holds

$$\Pr_{\substack{\mathsf{Share}(\alpha)\to(s_1,\dots,s_N)\\\mathsf{Share}(\alpha')\to(s_1',\dots,s_N')}}\left[\mathsf{Reconstruct}((s_i+s_i')_{i\in S})=\alpha+\alpha'\right]=1,$$

where Share and Reconstruct refer to the replicated secret sharing algorithms.

Hint: You can use the correctness property proven during the lecture.

- **4.** Can you detail out RSS for t = N? What secret sharing scheme, which we have already seen in the lecture, does it remind you of?
- 5. As opposed to Shamir's secret sharing scheme, the replicated secret sharing scheme is not *multiplicative*. Provide a counter example, by concretely setting N, t and q and executing the Share algorithm, such that the product of the shares (of some secret shared values α and α') do not allow for reconstructing the product $\alpha \cdot \alpha$.

Exercise 2. GGM-Tree

In this exercise we will learn about the GGM-tree construction, a generic construction of pseudo-random functions (PRF) from pseudo-random generators (PRG).

Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{2\lambda}$ be a length-doubling PRG with output split as $G(x) = G_0(x) \|G_1(x)$, where both $G_b(x) \in \{0,1\}^{\lambda}$. Here $\|$ denotes the concatenation of bits.

For $k \in \{0,1\}^{\lambda}$ and $x \in \{0,1\}^{\ell}$, define the function $F(k,x) = G_{x_{\ell}}(\cdots G_{x_{2}}(G_{x_{1}}(k))\cdots)$.

- **1.** Can you try to visualize the construction of F(k, x) in form of a binary tree for $\ell = 3$? Label the path for the input x = 010.
 - **Hint:** Going "left" means taking the output $G_0(\cdot)$ and going "right" means taking the output $G_1(\cdot)$ as a fresh input to the next evaluation of G.
- **2.** Let H_0 be the experiment where the adversary interacts with the real oracle $F(k, \cdot)$. Let H_ℓ be the experiment where the adversary interacts with a truly random function f sampled from the set of all functions $\{0,1\}^\ell \to \{0,1\}^\lambda$.
 - Describe the hybrids $H_1, \ldots, H_{\ell-1}$, where the first i levels of the tree are replaced with random values. Explain why there are exactly ℓ hybrids.
- 3. Prove that distinguishing two sequential hybrids H_{i-1} and H_i would give an adversary that breaks the pseudorandomness of the PRG G.

Note: Reference for further reading: *How to Construct Random Functions* by Oded Goldreich, Shafi Goldwasser and Silvio Micali, Journal of ACM'1986.